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A B S T R A C T   

Land degradation is a universal environmental problem around the world, which affects 1.5 billion people’s well- 
being. Therefore, the efforts to monitor where land degradation has happened and to find out the causes are 
meaningful for land management and restoration. Arid regions such as Southern Africa have attracted many 
concerns on land degradation assessment. However, previous studies have neglected the impacts of rainfall 
variation and possible breakpoints. In this study, the Time Series Segment and Residual Trend (TSS-RESTREND) 
method was used to detect land degradation in southern Africa and to compare with linear regression, 
RESTREND methods. Using TSS-RESTREND, 73.22% of the study area was found with vegetation controlled by 
precipitation, and 18.9% of the study area was found with breakpoints detected. Besides, results demonstrated 
that these increasing, decreasing, unchanged, and indeterminate pixels respectively made up 21.32%, 9.67%, 
42.23%, and 26.78% of the study area. By eliminating positive effects from precipitation and including negative 
effects from breakpoints, TSS-RESTREND highlighted the potential overestimate of improvement by the linear 
regression method and the underestimate of degradation by the linear regression and RESTREND methods. These 
results showed that the land degradation detection with TSS-RESTREND method is useful for land conservation 
and restoration.   

1. Introduction 

Land degradation is a universal environmental problem around the 
world (Spinoni et al., 2015) and usually reduces the capability of the 
land to provide ecosystem goods and perform functions and services that 
support society and development (Hassan, 2005). Global land degra-
dation assessment indicated that 24% of the global land area with 
degrading existing, which areas are home to 1.5 billion people (Bai et al., 
2008). Therefore, efforts to monitor where land degradation has 
happened and to find out the causes are meaningful for land manage-
ment and restoration. With remote-sensing techniques, most studies use 
the normalized difference vegetation index (NDVI) as a proxy for 
vegetation productivity to detect long-term declines in ecosystem pro-
ductivity by linear regression analysis and the nonparametric MK test 
(Higginbottom and Symeonakis, 2014). As a result of climatic variations 
and human activities (UNCED, 1994), land degradation is related to 
extreme precipitation and temperature (Kalisa et al., 2019), soil mois-
ture (Wei et al., 2019), cropland extension (Matlhodi et al., 2019), and 

deforestation (Silva et al., 2019). 
Southern Africa includes ten countries in the southern part of Africa, 

which is composed of more than 70% arid land and is home to 105.6 
million people (Cervigni, R., & Morris, 2016). Given the high vulnera-
bility of vegetation to environmental dynamics and disturbances, 
Southern Africa has attracted many concerns on land degradation 
detection and assessment on regional and local scales (Bai et al., 2008; 
Klintenberg and Seely, 2004). However, different indicators used and 
unmatched period make the results of these studies incomparable, which 
failed to reveal the extent and intensity of degradation in Southern Af-
rica. For example, the results from degradation risk assessment in 
Namibia calculated with grazing density and population (Klintenberg 
and Seely, 2004) are not comparable for land degradation assessment in 
South Africa with data of forage productivity (Wessels et al., 2004). 
Moreover, results calculated with data from 1971 to 1999 (Klintenberg 
and Seely, 2004) are also not comparable with data from 1951 to 2010 
(Spinoni et al., 2015). Therefore, to provide more evidence-based in-
formation for land-use management and sustainable development, a 
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degradation assessment including all countries of Southern Africa and 
with the same indicators is needed. 

In arid regions, vegetation dynamics are mainly controlled by rain-
fall (Helldén and Tottrup, 2008). In such cases, changes in vegetation 
index caused by increasing precipitation may mask degradation (Wes-
sels et al., 2012). Consequently, the Residual Trend (RESTREND) anal-
ysis was proposed and applied to detect land degradation with rainfall 
impacts eliminated (Bai et al., 2008; Wessels et al., 2012). Under the 
assumption of a significant correlation between precipitation and 
vegetation (P < 0.05), the residual of precipitation vegetation rela-
tionship was regressed over time (Wessels et al., 2012). With the 
RESTREND method, degradation induced by human activities had been 
detected in China (Xue et al., 2019) and a positive residual trend was 
determined to be related to shrub encroachment (Saha et al., 2015). 
Besides, given ongoing climatic change and intensified human activities, 
the vegetation-precipitation relationship (VPR) is likely to have 
changed. For example, a breakpoint in VPR that presents structural 
change may emerge after extreme drought. And it will breakdown the 
assumption of the RSETREND method (Smith et al., 2019). Conse-
quently, the time-series segment and residual trend analysis (TSS-RES-
TREND) was put out to incorporate the influence from breakpoints into 
RESTREND, with breakpoints detected by Breaks for Additive Seasonal 
and Trend (BFAST) and Chow test (Burrell et al., 2017). Using the 
TSS-RESTREND method, Burrell et al. (2017) has detected breakpoints 
induced by bushfires and the decline of rabbit overgrazing in Australia 
and corrected the underestimate of degradation by RESTREND. Simi-
larly, Southern Africa is mainly made up of arid land, and the strong 
relationship between vegetation and precipitation has been proved 
(Sedano et al., 2016). Under the dynamics of climate (Spinoni et al., 
2015) and human activities, the ecosystem composition and the residual 
trends have probably changed. However, previous studies have 
neglected the impacts of rainfall variation and possible breakpoints. 
Consequently, this study aim to apply TSS-RESTREND to detect land 
degradation in Southern Africa and to compare the performance of 
linear regression, RESTREND, and TSS-RESTREND techniques. Finally, 
the drivers of degradation were also analyzed to provide a qualitative 
evaluation of the performance of TSS-RESTREND. 

2. Study area 

The study area is composed of ten countries in Southern Africa 
(Angola, Zambia, Zimbabwe, Malawi, Mozambique, Namibia, 

Botswana, South Africa, Lesotho, and the Republic of Eswatini). Aridity 
Index is defined as P (Precipitation)/ETP (potential evapotranspiration) 
(FAO, 2016). In Southern Africa, the most of study area is composed of 
arid land with aridity index <0.65, and from the northeast to the 
southwest, the aridity index decrease, which means the increasing stress 
from aridity (Zomer et al., 2008). Besides, Southern Africa has a wide 
diversity of land cover, including tree cover, shrub cover, herbaceous 
cover, and bare cover, besides these there are land covers controlled by 
human being like cropland and artificial land (Fig. 1). 

Given that the vegetation index in the bare region varies widely and 
is affected by soil reflectance and biocrust, pixels with mean annual 
NDVImax less than 0.1 were masked (Smith et al., 2019). Besides, the 
water area was also eliminated. 

3. Methods 

3.1. Datasets and processing 

Normalized Difference Vegetation Index (NDVI), is defined as (NIR 
− RED) ⁄ (NIR + RED), where NIR and RED are reflectance values in the 
near-infrared and red wavebands, respectively (Higginbottom and 
Symeonakis, 2014). NDVI represents the physiological activities of 
vegetation and it is the most used vegetation index as a measure of 
vegetation greenness and a proxy for ecosystem productivity (Smith 
et al., 2019). GIMMS NDVI dataset was produced from Advanced Very 
High Resolution Radiometer (AVHRR) instruments that extends from 
1981 to the present with a semi-monthly temporal resolution and a 
1/12◦ resolution. Calibration errors in the Global Inventory Monitoring 
and Modeling System Version 3 NDVI (GIMMSv3.0 g) dataset caused 
significant errors in the degradation detection over some of Australia’s 
dryland regions. These errors have been addressed in the updated 
GIMMSv3.1 g which is strongly recommended by Burrell et al. (2018). 
GIMMSv3.1 g from 1982 to 2015 was obtained from the National 
Aeronautics and Space Agency (Pinzon and Tucker, 2014) and is avail-
able from the web page (“https://ecocast.arc.nasa.gov/data/p 
ub/gimms/”). The dataset was resampled using the principle of 
first-order conservation remapping in ArcGIS10.5 from 1/12◦ to 0.1 to 
match the resolution of precipitation. The monthly NDVI was derived 
from the mean semi-monthly value and NDVImax is the largest value of 
the year. 

The dataset of precipitation in Southern Africa is needed to calculate 
the response of vegetation to the dynamics of precipitation. The Multi- 

Fig. 1. The land cover in Southern Africa.  
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Source Weighted-Ensemble Precipitation version 2 (MSWEP V2) dataset 
is a novel fully global historic precipitation dataset (1979–2017) with a 
three-hourly temporal resolution and a 0.1◦ resolution derived by 
optimally merging a range of the gauge, satellite, and reanalysis esti-
mates. According to the comparison with other datasets, MSWEP V2 
performs better in long-term mean precipitation estimates for global, 
land, and ocean domains (Beck et al., 2019). The dataset of MSEWP is 
available from the website: “http://www.gloh2o.org/”. Given the effect 
of offset between the response of vegetation and the dynamics of pre-
cipitation, the period of precipitation needs to extend 2 years before 
NDVI. Therefore, MSWEP V2 from 1980 to 2015 was obtained to match 
the period of GIMMS3.1 from 1982 to 2015. 

Global Land Cover 2000 (GLC, 2000) was produced with a 1-km 
spatial resolution with data from four sensors on-board Earth- 
observing satellites, each source of which was selected to map a specific 
ecosystem or land cover, seasonality or water regime (Mayaux et al., 
2004). To incorporate the experience of local knowledge into the process 
of mapping, this project called GLC2000 was based on that team of 
regional experts mapped each continent independently. This makes sure 
that optimum image classification methods were used and that the land 
cover legend was regionally appropriate. In the first level, the classes 
include seven types: forests, woodlands and shrublands, grasslands, 
agricultural lands, bare soils, other land-cover classes, and the second 
level includes 27 classes. The land cover map of Africa used in this study 
can be requested from the Joint Research Centre, either through the Web 
pages of the Global Vegetation Monitoring Unit, (https://www.gvm.jrc. 
it/glc2000/ProductGLC2000.htm). According to the importance and the 
proportion of land cover, for degradation analyses of different land 
cover, the following land-cover classes were used: tree cover (including 
different tree cover in Fig. 1), shrub cover, herbaceous cover, sparse 
cover (sparse herbaceous and sparse shrubs), cultivated areas, bare 
areas, and artificial surfaces. 

3.2. Linear regression 

Linear regression is used to calculate the NDVImax trend which can be 
accomplished in R studio (February 1, 5033) with R package “lm” 
downloaded from “https://cran.r-project.org/”. The following equation 
was used in this study: 

y= a ∗ x + b + E  

where y is annual NDVImax; x is time (from 1982 to 2015); a is the slope 
or rate of change of NDVImax; b is the intercept, and E is an error. Linear 
regression was used to calculate the correlation between precipitation 
and NDVImax and the trend of the residuals over time in RESTREND 
analyses. The residual trend was taken as significant when p < 0.1 and 
the VPR was taken as significant when P < 0.05. 

3.3. RESTREND analysis 

Residual trend (RESTREND) analysis was used to detect degradation 
without impact from precipitation, which can be accomplished in R 
studio (February 1, 5033) with R package “lm” downloaded from 
“https://cran.r-project.org/”. To eliminate the influence of precipitation 
from NDVI, optimal accumulated precipitation was calculated on every 
pixel by finding which combination of accumulation period (1–12 
months) and offset period (0–3 months) produced the highest and pos-
itive correlation coefficients (p < 0.05) with annual NDVImax (Burrell 
et al., 2017). The next step was to calculate the vegetation-precipitation 
relationship (VPR) (Wessels et al., 2012). Then the residual trend 
(RESTREND) of VPR was calculated by regressing the VPR residuals to 
time (Wessels et al., 2012). 

3.4. TSS-RESTREND analysis 

3.4.1. The procedures of TSS-RESTREND 
Time Series Segment and Residual Trend (TSS-RESTREND) was used 

to detect degradation with breakpoints considered and with impact from 
precipitation eliminated, which can be accomplished in R studio 
(February 1, 5033) with R package “TSS.RESTREND” downloaded from 
“https://cran.r-project.org/”. The procedures to calculate the time series 
of residual is the same as RESTREND mentioned in 3.3. 

3.4.2. Breaks for Additive Seasonal and Trend (BFAST) and the Chow test 
BFAST was widely used to assess structural change, which divided 

time series into seasonal components and trend components (Bai and 
Perron, 2003). With the stochastic fluctuation included in the time series 
of NDVI, BFAST has limitations in detecting breakpoints with the low 
accuracy of detection. But considering the independence between re-
sidual and precipitation, detecting breakpoints with residuals can 
improve the accuracy of breakpoints detection. In TSS-RESTREND 
analysis, BFAST was applied to identify potential breakpoints with 
complete time-series residuals (Burrell et al., 2017). To avoid that 
segmented series were too short, 0.15 times (5 years) the whole study 
period (1982–2015) was set as the shortest allowable segment. The 
Chow test is used to test for equality between sets of coefficients in two 
linear regressions (Chow, 1960). The null hypothesis of a Chow test is 
that there is no change in the regression coefficients across a potential 
breakpoint. The null hypothesis is rejected if the F-statistic reaches the 
critical threshold (α = 0.05) (Burrell et al., 2017). In this study, the 
Chow test will test the significance of breakpoints in VPR and residual 
trend. 

3.4.3. Piecewise linear regression 
Piecewise linear regression is calculated by the following equation: 

Yi = β0 + β1Xi + β2Zi + β3XiZi 

When a significant breakpoint was detected by BFAST and Chow test, 
piecewise regression was used to fit the residual trend and VPR before 
and after the breakpoint, where y is residual(or NDVImax), x is years(or 
precipitation), z is the value of the dummy variable (0 or 1), β0 is the 
intercept, β1 is the slope, β2 is the offset at the breakpoint, and β3 is the 
change in slope at the breakpoint. 

3.4.4. Techniques used to determine results 
According to whether the VPR and breakpoint are significant, the 

techniques used in the calculation can be divided into five categories 
(Fig. 4). Indeterminate refers to an insignificant relationship between 
precipitation and vegetation without significant breakpoint. Agricultural 
regions refers to a negative VPR. RESTREND refers to significant VPR, but 
without significant breakpoints in the residual change trend or in VPR, 
which is equal to the RESTREND method mentioned in 3.3. VPR Change 
Detected refers to the area where VPR and the residual trend have 
changed significantly during the study period. Segmented RESTREND 
indicates significant breakpoint only in residual. Among these types, 
only VPR Change Detected and Segmented RESTREND have breakpoints 
(Burrell et al., 2017). 

3.4.5. Total change and the direction of change 
The total change was calculated by adding the significant VPR break 

height to the significant residual change (Burrell et al., 2017). The sig-
nificance of VPR break height was tested by the t-test, and if p > 0.1, the 
VPR break height was taken as 0. The significance of residual change 
was tested by the F-test, and if p > 0.1, the residual change was taken as 
0. The direction of the residual change was obtained by the predicted 
value in 2015 minus the predicted value in 1982. The significance of the 
change was the p-value of the F-test. D1 (p < 0.01), D2 (0.01 < p <
0.025), and D3 (0.025 < p < 0.05) represent obvious decreases in 
vegetation productivity, whereas I1 (p < 0.01), I2 (0.01 < p < 0.025), 
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and I3 (0.025 < p < 0.05) represent increasing productivity. DNC (0.05 
< p < 0.1) and INC (0.05 < p < 0.1) represent observable decreasing and 
increasing trends respectively (Li et al., 2016). For comparison among 
these methods, the results of RESTREND (Fig. 5b) and linear trend 
analysis (Fig. 5c) were also calculated. 

4. Results 

4.1. Vegetation-precipitation relationship and breakpoints 

4.1.1. Vegetation-precipitation relationship 
In southern Africa, aridity index declines from northeast to south-

west (Zomer et al., 2008), and those pixels with vegetation growth 
controlled by the recent rainfall combination(Fig. 2b&d) (1–4 months’ 
accumulated precipitation and 0 offsets) are mainly distributed in the 
southwestern portion of the study area(Fig. 2a&c). Besides, the pixels in 
the northern of study area are found without significant VPR 
(Fig. 2a&c). These spatial patterns demonstrate that the drier the envi-
ronment, the stronger is the relationship between NDVImax and precip-
itation, which is similar to the results reported by Helldén et al. (2008) 
and Seddon et al. (2016). 

4.1.2. Breakpoints and techniques 
Setting 5 years as the shortest segment, the timing of breakpoints 

ranged from 1986 to 2010 (Fig. 3b) and pixels with breakpoints made up 
18.9% of the entire study area. Overall, the number of breakpoints 
increased from 1986 to 2010. The frequency of breakpoints in 1988, 
1995, 1998, 1999, 2005, and 2010 is relatively higher than the adjacent 
years. The calibration periods of satellite sensors that are probably 

detected as breakpoints are 1988, 1994, 2000, 2003, and 2008 (Burrell 
et al., 2017). However, besides 1988, no apparent agreement was found 
between frequency peaks and calibration periods. In space, breakpoints 
were mainly distributed along the western coast of Southern Africa, in 
which there were several spatial clusters with breakpoints in the same 
year, for example, a region in the western part of South Africa with 
breakpoints in 2009, a region along the west coast of South Africa and 
Namibia with breakpoints in 2006, and a region in the northern part of 
Namibia with breakpoints in 1998. 

As Fig. 4 show, the most widely applicable method was RESTREND, 
which could be used in 54.4% of the study area. The pixels with 
RESTREND were mostly distributed in the southern part of the study 
area, including southern Zimbabwe, South Africa, Botswana, Namibia, 
and southern Mozambique. Pixels with indeterminate results made up 
26.1% of the study area and were mostly distributed in Zambia, Angola, 
northern Zimbabwe, and northern Mozambique. Pixels with Segmented 
RESTREND and VPR Change Detected made up 6.9% and 12% of the study 
area respectively and were mainly distributed in the western part of the 
study area. Pixels classified as Agricultural regions made up only 0.7% of 
the study area. Pixels with significant breakpoints in VPR or residual 
trend made up 18.9% of the study area, which indicates that the as-
sumptions of the TSS-RESTREND method are closer to the variability of 
VPR and residual dynamics than those of RESTREND. 

4.2. Dynamics of vegetation detected by TSS-RESTREND, RESTREND, 
and linear trend analysis 

Table 1 lists the specific percentages for the various results. 
“increasing” refers to a significant increase (p < 0.1), “decreasing” refers 

Fig. 2. Spatial patterns of (a) accumulation period and (c) offset period (pixels with insignificant VPR(P > 0.05) are in grey); proportion (%) for (b) the accumulation 
period and (d) the offset period. 
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to a significant decrease (p < 0.1), “unchanged” refers to an insignificant 
increase or decrease (p > 0.1), and “indeterminate” refers to an insig-
nificant or negative relationship between annual NDVImax and precipi-
tation; This class “indeterminate” includes pixels of indeterminate and 
agricultural regions. Using TSS-RESTREND, these increasing, decreasing, 
unchanged, and indeterminate pixels respectively made up 21.32%, 
9.67%, 42.23%, and 26.78% of the study area; this result was different 
from those found by the other two methods. For example, more 
increasing trends were detected by linear trend analysis, and fewer 
decreasing trends were detected by RESTREND. 

Fig. 5 shows the spatial pattern of the results obtained by 
RESTREND, linear trend analysis, and TSS-RESTREND. According to the 
results from TSS-RESTREND, the degraded areas were mainly located in 
western South Africa, the northwestern and southern Namibia, south-
western Angola, southern Mozambique, and southeastern Zimbabwe. 
The improved areas were concentrated to the southeast, center, and west 
of the study area, including eastern South Africa, eastern and south-
western Zimbabwe, eastern Namibia, and central and northern 
Botswana. Compared with linear trend analysis, more degradation was 
detected in the western part of South Africa, the northwestern and 
southern parts of Namibia, and southwestern Angola, and less 
improvement was observed in the southeastern portion of the study 

area. However, in the northern part of the study area, TSS-RESTREND 
was not applicable due to the insignificant VPR. Compared with 
RESTREND, the TSS-RESTREND method found more land degradation 
in the southern part of Namibia and the western part of South Africa 
(Fig. 5b&c). 

4.3. Impacts of precipitation and breakpoints on the dynamics of 
vegetation 

The difference between the total change obtained from TSS- 
RESTREND and RESTREND represents the effect of breakpoints 
(Fig. 6a). The effects of breakpoints were mainly negative in the western 
part of South Africa, the northern part of Namibia, and the southern part 
of Angola. The effect of precipitation on NDVI was obtained by sub-
tracting the total change in TSS-RESTREND from the total annual 
change in NDVImax (Fig. 6b). As Fig. 6b shows that precipitation induced 
positive dynamics in most of the study area but had a slight negative 
effect in the northern part of Namibia and the southern part of South 
Africa. Fig. 7 shows in detail how the direction of change transformed 
from linear trend analysis and RESTREND to TSS-RESTREND. The 
highest percentages of transformed pixels between linear trend analysis 
and TSS-RESTREND were 16.92% of pixels from increasing to un-
changed and 5.31% of pixels from unchanged to decreasing (Fig. 7a). 
The highest percentages of transformed pixels between RESTREND and 
TSS-RESTREND were 3.51% of pixels from increasing to unchanged and 
3.76% of pixels from unchanged to decreasing (Fig. 7b). 

5. Discussions 

5.1. Relationship between precipitation and vegetation 

For the entire study area, 73.21% of pixels demonstrated significant 
VPR, which indicates that in Southern Africa, vegetation growth is 
mainly controlled by rainfall, and highlights the need to use residual 
analysis to eliminate rainfall impacts on degradation detection. The 
growing season in southern hemisphere is from October to March. But in 
this study, we didn’t include the whole growing season in the same year, 
which may influence the results to some extent. However, considering 
that the NDVImax may occur in a certain month and Dent et al. (2009) 
had proved that the influence of used calendar year made no difference 
on VPR, thus we think the impact will be small in this study. 

Due to the introduction of new grain varieties and farming practices 
and increased irrigation, NDVImax continually increases, whereas pre-
cipitation decreases (Burrell et al., 2017). In this situation, these pixels 
with negative correlation between NDVImax and precipitation were 
classified as Agricultural regions by Burrell et al (2017). Referring to GLC 
2000 (Fig. 1), large areas of cultivated and managed areas are in the 
southern portion of Angola, the northern part of Namibia, the 

Fig. 3. (a) Spatial patterns and (b) frequency of significant breakpoints in VPR or residual.  

Fig. 4. Technique used to determine results. Indeterminate refers to an insig-
nificant VPR without significant breakpoint. Agricultural regions refers to a 
negative VPR. RESTREND refers to significant VPR without significant break-
points. VPR Change Detected refers to the area significant breakpoint in VPR. 
Segmented RESTREND indicates significant breakpoint only in residual. 
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southwestern and eastern parts of South Africa, and Zimbabwe. How-
ever, these regions have been detected as showing significant VPR or 
breakpoints (Fig. 4), which indicates that the growth of these crops 
mainly relies on rainfall. Therefore, we think that the influence of irri-
gation is relatively low and will not alter the results of degradation 
detection much. Moreover, the criteria of detection for Agricultural re-
gions is not suitable for the crops fed by precipitation in Southern Africa. 

5.2. Implications and causes of breakpoints 

Considering the presence of short-time disturbances, the breakpoint 
years in the beginning or at the end of the study period must be 

interpreted carefully (Pan et al., 2018; Wessels et al., 2012). A pixel in 
the western part of South Africa with a residual breakpoint in 2010 was 
detected to have more reduction (red bar) than without a breakpoint 
(grey dotted line) (Fig. 8). Although the breakpoint induced by the 
fluctuation of high values in 2011, 2012, and 2013 may be misleading, it 
is hard to validate the cause of the disturbance. However, many pixels 
with breakpoints in 2010 and 2009 were identified (Fig. 3a), demon-
strating the presence of a large-scale influence in these two years. 
Degradation with breakpoint in residual and VPR indicate the light 
degradation and the severe degradation respectively(Burrell et al., 
2017) and in this study, two kinds of breakpoints mainly distributed in 
the transition area from bare cover to herbaceous cover to shrub cover 
(Figs. 1 and 4). Considering the perturbation from climate change, the 
ecosystem may shift from one to another alternative state (Hu et al., 
2018), which will be detected as breakpoints in VPR or residual. 

When considering breakpoints, the dynamics of ecosystem structure 
and trend lead to a more complex process. For example, with significant 
breakpoints, the degradation in southern Namibia and northern Angola 
were detected (Fig. 5a). However, residual trend in these areas have 
shifted from decline to incline (Fig. 9), which means the degradation 

Fig. 5. The spatial pattern of the direction of change decreasing (red) and increasing (green) refer to land degradation and improvement respectively. The classi-
fication of the significance of change refers to 3.4.4; The direction of change detected by (a) TSS-RESTREND, (b) RESTREND and (c) linear trend analysis; Pixels in 
dark grey represent insignificant VPR. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Percentages for the various results (%).   

Increasing Decreasing Unchanged Indeterminate 

Linearity 45.14 8.22 46.64 - 
RESTREND 22.95 5.17 41.92 29.96 
TSS-RESTREND 21.32 9.67 42.23 26.78  
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will be reversed in the long-term. To specify how land degradation 
happened and how to develop, further research will be needed to focus 
on breakpoints. 

5.3. Possible factors inducing vegetation dynamics 

The residual trend represents the part of NDVI not induced by pre-
cipitation dynamics. To specify the factors, the percentages of results in 
different land-cover classes were calculated (Fig. 10), and the results 
were verified with other literature published. 

Fig. 6. (a) Impacts from breakpoints calculated with total change detected by TSS-RESTREND minus total change detected by RESTREND; (b) impacts from pre-
cipitation calculated with total change detected by Linearity minus total change detected by TSS-RESTREND. 

Fig. 7. Details in the transformed proportion of direction of change from (a) linear trend analysis and (b) RESTREND to TSS-RESTREND.  

Fig. 8. Pixel in western South Africa with a breakpoint in 2010.  
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By field investigation, the Global Assessment of Human-Induced Soil 
Degradation (GLAOD) mapped the soil degradation pattern in 1991 
(Oldeman, 1992). According to GLAOD, in the northwestern part of 
Namibia and the western part of South Africa, medium and very high 
water erosion severity exists. Besides, the erosion may also be intensified 
by the increasing precipitation. Therefore, the soil erosion is the po-
tential explanation for the land degradation in the western part of South 
Africa, which is consistent with the relatively higher percentages of 
decrease in bare area and sparse cover (Figs. 1 and 10). In the northern 
part of Namibia, commonly owned areas were used intensively and 
tended to become more and more intensified (Unccd, 2005). The pattern 
of the most intensely used areas is similar to the distribution of degra-
dation in northern Namibia (Fig. 5a). This places the ecosystem in 
northern Namibia under a high risk of degradation (Klintenberg and 
Seely, 2004). Beside, by interpreting remote-sensing images, urbaniza-
tion has also been related to reductions in ecosystem productivity in 
northern Namibia (Wingate et al., 2019). In sub-Saharan Africa, many 
charcoal-related industries have been increasing as agriculture expands 
and have destroyed forest and induced land degradation (Schneibel 

et al., 2017).Therefore, in this study, other degraded areas like western 
Angola and central Mozambique are probably related to the destroyed 
tree cover (Figs. 1 and 5a). 

Saha et al. (2015) compared the distributions of shrub encroachment 
and improved area in southern Africa from 2001 to 2015 and proposed a 
relationship between them. The relatively higher percentage of increase 
in shrub and herbaceous cover has supported evidence of shrub 
encroachment (Fig. 10). Besides this, the increased CO2 concentration 
has become the main factor in greening (Zhu et al., 2016), which can 
increase the use effectiveness of plants and mitigate pressure on water 
resources, especially in arid regions (Lu et al., 2016). Cultivated areas 
had the highest percentage of increasing (Figs. 5a and 10), which sug-
gests that the effect of humans may increase the productivity of crop 
fields (Chen et al., 2019). A comparison with the FAO dataset demon-
strates that in Southern Africa, the harvested area has continually 
declined from 1961 to 2017, but total production has steadily increased 
(FAOSTAT, 2019), which highlights the increasing productivity per unit 
of cropland. 

5.4. Degradation masked by the impacts of precipitation and breakpoints 

The TSS-RESTREND method identified 4.5% degradation more than 
RESTREND (Fig. 7b), which may be induced by soil erosion and inten-
sified land use. This shows that the TSS-RESTREND method has relative 
advantages over the RESTREND method in identifying degradation with 
breakpoints. Moreover, TSS-RESTREND found 23.82% of the study area 
with improvement less and 1.45% of the study area with degradation 
greater than that predicted by the linear trend method. However, TSS- 
RESTREND detects degradation with the residual trend, while the 
Linearity method detects degradation with time series of NDVImax, 
which are different two parts of vegetation dynamics. According to the 
definition of degradation, it is hard to judge which method is better. But 
through the qualitative comparison with other literature, results detec-
ted by TSS-RESTREND may indicate degradation induced by potential 
factors except precipitation, which has the function as warning signals of 
degradation. 

Although TSS-RESTREND is not suitable for all Southern Africa, it 
can correct potential overestimates of improvement induced by pre-
cipitation (Fig. 6a). For those pixels that are not controlled by precipi-
tation, the results detected by the linear trend model can serve as 
complementary results to those from TSS-RESTREND. 

6. Conclusions 

This study has applied the TSS-RESTREND method to detect land 
degradation masked by precipitation and breakpoints in southern Af-
rica. For 73.22% of Southern Africa, vegetation growth is controlled by 
precipitation, and 18.9% of Southern Africa is affected by breakpoints, 
which indicates that TSS-RESTREND is useful for land degradation 
detection in Southern Africa. Also, TSS-RESTREND found that 21.32% of 
Southern Africa experienced positive change, 9.67% experienced 
negative change, and 42.23% had no significant change from 1982 to 
2015. Compared with other literature, the potential explanations for 
degradation in the western part of South Africa degradation and in the 
northern part of Namibia are soil erosion and intensified use of 
commonly owned areas respectively. Through eliminating the positive 
effects from precipitation and including negative effects from break-
points, TSS-RESTREND has highlighted the potential overestimates of 
improvement by the linear trend model and underestimates of degra-
dation by the linear trend model and RESTREND. The results show that 
TSS-RESTREND can serve as a promising method for land degradation 
detection and the results of degradation detection with TSS-RESTREND 
are meaningful for land conservation and restoration. Finally, given the 
complex ecosystem dynamics at breakpoints, further research should be 
focused on how land degradation happens at breakpoints and how to 
develop after a breakpoint. As well, the ecological interpretations 

Fig. 9. Turning classification, D-D, transform from decreasing to decreasing; D- 
I, transform from decreasing to increasing; I-D, transform from increasing to 
decreasing; I–I, transform from increasing to increasing. 

Fig. 10. Percentages of results in the different land-cover classes.  
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behind residual need to be strengthened. 
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Schneibel, A., Stellmes, M., Röder, A., Frantz, D., Kowalski, B., Haß, E., Hill, J., 2017. 
Assessment of spatio-temporal changes of smallholder cultivation patterns in the 
Angolan Miombo belt using segmentation of Landsat time series. Remote Sens. 
Environ. https://doi.org/10.1016/j.rse.2017.04.012. 

Sedano, F., Silva, J.A., Machoco, R., Meque, C.H., Sitoe, A., Ribeiro, N., Anderson, K., 
Ombe, Z.A., Baule, S.H., Tucker, C.J., 2016. The impact of charcoal production on 
forest degradation: a case study in Tete, Mozambique. Environ. Res. Lett. https:// 
doi.org/10.1088/1748-9326/11/9/094020. 

Seddon, A.W.R., Macias-Fauria, M., Long, P.R., Benz, D., Willis, K.J., 2016. Sensitivity of 
global terrestrial ecosystems to climate variability. Nature. https://doi.org/10.1038/ 
nature16986. 

Silva, J.A., Sedano, F., Flanagan, S., Ombe, Z.A., Machoco, R., Meque, C.H., Sitoe, A., 
Ribeiro, N., Anderson, K., Baule, S., Hurtt, G., 2019. Charcoal-related forest 
degradation dynamics in dry African woodlands: evidence from Mozambique. Appl. 
Geogr. https://doi.org/10.1016/j.apgeog.2019.04.006. 

Smith, W.K., Dannenberg, M.P., Yan, D., Herrmann, S., Barnes, M.L., Barron-Gafford, G. 
A., Biederman, J.A., Ferrenberg, S., Fox, A.M., Hudson, A., Knowles, J.F., 
MacBean, N., Moore, D.J.P., Nagler, P.L., Reed, S.C., Rutherford, W.A., Scott, R.L., 
Wang, X., Yang, J., 2019. Remote sensing of dryland ecosystem structure and 
function: progress, challenges, and opportunities. Remote Sens. Environ. https://doi. 
org/10.1016/j.rse.2019.111401. 

Spinoni, J., Vogt, J., Naumann, G., Carrao, H., Barbosa, P., 2015. Towards identifying 
areas at climatological risk of desertification using the Köppen-Geiger classification 
and FAO aridity index. Int. J. Climatol. https://doi.org/10.1002/joc.4124. 

Unccd, 2005. Land Degradation Assessment in Drylands, Seventh Session of the 
Conference of the Parties item 10 of the provisional agenda.  

UNCED, 1994. United Nations: convention to combat desertification in those countries 
experiencing serious drought and/or desertification, particularly in Africa. Int. Leg. 
Mater. https://doi.org/10.1017/s0020782900026711. 

Wei, F., Wang, S., Fu, B., Wang, L., Liu, Y.Y., Li, Y., 2019. African dryland ecosystem 
changes controlled by soil water. Land Degrad. Dev. https://doi.org/10.1002/ 
ldr.3342. 

Wessels, K.J., Prince, S.D., Frost, P.E., Van Zyl, D., 2004. Assessing the effects of human- 
induced land degradation in the former homelands of northern South Africa with a 1 
km AVHRR NDVI time-series. Remote Sens. Environ. https://doi.org/10.1016/j. 
rse.2004.02.005. 

Wessels, K.J., van den Bergh, F., Scholes, R.J., 2012. Limits to detectability of land 
degradation by trend analysis of vegetation index data. Remote Sens. Environ. 
https://doi.org/10.1016/j.rse.2012.06.022. 

Wingate, V.R., Phinn, S.R., Kuhn, N., 2019. Mapping precipitation-corrected NDVI trends 
across Namibia. Sci. Total Environ. https://doi.org/10.1016/j. 
scitotenv.2019.05.158. 

Xue, Y., Zhang, B., He, C., Shao, R., 2019. Detecting vegetation variations and main 
drivers over the agropastoral ecotone of northern China through the ensemble 
empirical mode decomposition method. Rem. Sens. https://doi.org/10.3390/ 
rs11161860. 

Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., 
Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., 
Liu, Y., Liu, R., Mao, J., Pan, Y., Peng, S., Peuelas, J., Poulter, B., Pugh, T.A.M., 
Stocker, B.D., Viovy, N., Wang, X., Wang, Y., Xiao, Z., Yang, H., Zaehle, S., Zeng, N., 
2016. Greening of the Earth and its drivers. Nat. Clim. Change. https://doi.org/ 
10.1038/nclimate3004. 

Zomer, R.J., Trabucco, A., Bossio, D.A., Verchot, L.V., 2008. Climate change mitigation: a 
spatial analysis of global land suitability for clean development mechanism 
afforestation and reforestation. Agric. Ecosyst. Environ. https://doi.org/10.1016/j. 
agee.2008.01.014. 

Z. Li et al.                                                                                                                                                                                                                                        

https://doi.org/10.1002/jae.659
https://doi.org/10.1111/j.1475-2743.2008.00169.x
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1175/BAMS-D-17-0138.1
https://doi.org/10.1016/j.isprsjprs.2018.08.017
https://doi.org/10.1016/j.isprsjprs.2018.08.017
https://doi.org/10.1016/j.rse.2017.05.018
https://doi.org/10.1596/978-1-4648-0817-3
https://doi.org/10.1038/s41893-019-0220-7
https://doi.org/10.2307/1910133
https://doi.org/10.1111/j.1475-2743.2009.00197.x
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref10
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref11
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref11
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref12
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref12
https://doi.org/10.1016/j.gloplacha.2008.10.006
https://doi.org/10.3390/rs6109552
https://doi.org/10.1111/ele.13126
https://doi.org/10.1038/s41598-019-53150-0
https://doi.org/10.1007/s10661-004-3994-6
https://doi.org/10.1007/s10661-004-3994-6
https://doi.org/10.1016/j.jaridenv.2015.07.013
https://doi.org/10.1016/j.jaridenv.2015.07.013
https://doi.org/10.1038/srep20716
https://doi.org/10.3390/su11195174
https://doi.org/10.1111/j.1365-2699.2004.01073.x
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref22
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref22
https://doi.org/10.1016/j.rse.2018.05.018
https://doi.org/10.3390/rs6086929
https://doi.org/10.1890/ES15-00098.1
https://doi.org/10.1016/j.rse.2017.04.012
https://doi.org/10.1088/1748-9326/11/9/094020
https://doi.org/10.1088/1748-9326/11/9/094020
https://doi.org/10.1038/nature16986
https://doi.org/10.1038/nature16986
https://doi.org/10.1016/j.apgeog.2019.04.006
https://doi.org/10.1016/j.rse.2019.111401
https://doi.org/10.1016/j.rse.2019.111401
https://doi.org/10.1002/joc.4124
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref32
http://refhub.elsevier.com/S0140-1963(20)30213-5/sref32
https://doi.org/10.1017/s0020782900026711
https://doi.org/10.1002/ldr.3342
https://doi.org/10.1002/ldr.3342
https://doi.org/10.1016/j.rse.2004.02.005
https://doi.org/10.1016/j.rse.2004.02.005
https://doi.org/10.1016/j.rse.2012.06.022
https://doi.org/10.1016/j.scitotenv.2019.05.158
https://doi.org/10.1016/j.scitotenv.2019.05.158
https://doi.org/10.3390/rs11161860
https://doi.org/10.3390/rs11161860
https://doi.org/10.1038/nclimate3004
https://doi.org/10.1038/nclimate3004
https://doi.org/10.1016/j.agee.2008.01.014
https://doi.org/10.1016/j.agee.2008.01.014

	Detecting land degradation in Southern Africa using Time Series Segment and Residual Trend (TSS-RESTREND)
	1 Introduction
	2 Study area
	3 Methods
	3.1 Datasets and processing
	3.2 Linear regression
	3.3 RESTREND analysis
	3.4 TSS-RESTREND analysis
	3.4.1 The procedures of TSS-RESTREND
	3.4.2 Breaks for Additive Seasonal and Trend (BFAST) and the Chow test
	3.4.3 Piecewise linear regression
	3.4.4 Techniques used to determine results
	3.4.5 Total change and the direction of change


	4 Results
	4.1 Vegetation-precipitation relationship and breakpoints
	4.1.1 Vegetation-precipitation relationship
	4.1.2 Breakpoints and techniques

	4.2 Dynamics of vegetation detected by TSS-RESTREND, RESTREND, and linear trend analysis
	4.3 Impacts of precipitation and breakpoints on the dynamics of vegetation

	5 Discussions
	5.1 Relationship between precipitation and vegetation
	5.2 Implications and causes of breakpoints
	5.3 Possible factors inducing vegetation dynamics
	5.4 Degradation masked by the impacts of precipitation and breakpoints

	6 Conclusions
	Author contributions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


