
Nature Reviews Earth & Environment

nature reviews earth & environment https://doi.org/10.1038/s43017-025-00718-2

Review article  Check for updates

Anthropogenic impacts on 
the Yellow River Basin
Shuai Wang 1, Shuang Song1,2,3, Haoyu Zhang1, Lu Yu 1, Chentai Jiao1, Changjia Li 1, Xutong Wu 1, Wenwu Zhao 1, 
Jim Best 4,5,6,7, Patrick Roberts2 & Bojie Fu 8 

Abstract

The Yellow River Basin supports a population of 200 million people and 
contains 15% of arable land in China. Water scarcity in the region is being 
exacerbated by climate change and human activities. In this Review, we 
discuss anthropogenic impacts on the hydrological cycle and sediment 
dynamics of the Yellow River since the 1950s. The Yellow River had one 
of the largest sediment loads in the world, peaking at 2.1 Gt yr−1 in 1958. 
Such high sediment loads elevated flood risk; therefore, reservoirs, 
conservation and revegetation projects were implemented, reducing 
sediment transport by 90% since the 1980s. However, these efforts also 
impacted the hydrology of the Yellow River Basin, leading to an increase 
in evapotranspiration fluxes (1.79 mm yr−2, 1980–2020) and reduced 
runoff. In addition, human water use has increased by 15.8% since the 
1980s. The resulting reductions in soil water storage and intensification 
of the vertical water cycle foreshadow potential resource crises and will 
potentially lead to irreversible ecosystem degradation. Predicting the 
outcomes of water management policies and engineering projects is 
essential but highly complex owing to feedback loops and interactions 
between human activities and hydrological changes. Addressing these 
challenges, which are also faced by other arid-region rivers, will require 
dynamic monitoring of water storage and improved understanding of 
human–hydrological interactions.

Sections

Introduction

Hydrological changes

Changing sediment load 
and deposition

Anthropogenic changes

Interplay of human and 
hydrological systems

Summary and future 
perspectives

1State Key Laboratory of Earth Surface Processes and Disaster Risk Reduction, Faculty of Geographical Science, 
Beijing Normal University, Beijing, China. 2Department of Co-evolution of Land Use and Urbanisation, Max Planck 
Institute of Geoanthropology, Jena, Germany. 3Department Structural Changes of the Technosphere, Max Planck  
Institute of Geoanthropology, Jena, Germany. 4Department of Earth Science and Environmental Change, 
University of Illinois Urbana-Champaign, Urbana, IL, USA. 5Department of Geography and GIS, University of 
Illinois Urbana-Champaign, Urbana, IL, USA. 6Department of Mechanical Science and Engineering, University of 
Illinois Urbana-Champaign, Urbana, IL, USA. 7Ven Te Chow Hydrosystems Laboratory, Department of Civil and 
Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA. 8State Key Laboratory of 
Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 
Beijing, China.  e-mail: bfu@rcees.ac.cn

http://www.nature.com/natrevearthenviron
https://doi.org/10.1038/s43017-025-00718-2
http://crossmark.crossref.org/dialog/?doi=10.1038/s43017-025-00718-2&domain=pdf
http://orcid.org/0000-0003-1595-9858
http://orcid.org/0009-0009-9627-2775
http://orcid.org/0000-0001-7297-9658
http://orcid.org/0000-0001-6124-0436
http://orcid.org/0000-0001-5342-354X
http://orcid.org/0000-0001-5314-6140
http://orcid.org/0000-0002-9920-9802
mailto:bfu@rcees.ac.cn


Nature Reviews Earth & Environment

Review article

cycle has intensified, with increased evapotranspiration but with soil 
moisture, groundwater and glacier storage all decreasing11,27,28. The 
rising human demand for water resources has driven a rapid increase in 
water withdrawals. Expansion in the number and area of reservoirs has 
also led to an increase in open water bodies, which are then exposed to 
evaporation29,30. Consequently, the water cycle of the YRB has exhibited 
a decrease in blue water (available surface water and groundwater), 
an increase in green water flow (evapotranspiration, especially tran-
spiration) and a reduction in green water storage (soil moisture)31,32, 
as now discussed.

Precipitation
Long-term average annual precipitation in the YRB is approximately 
472.69 ± 94.16 mm yr−1, decreasing from southeast to northwest and 
predominantly concentrated between May and September33,34. Dur-
ing 1960–2000, precipitation in the YRB decreased at –2.21 mm yr−2 
(P < 0.05)35–38, but subsequently increased with a rate of 3.12 mm yr−2 
in 2000–2022 (P < 0.05) (Fig. 2a). Precipitation thus does not display a 
clear statistically significant long-term trend. There is substantial spa-
tial variability in precipitation trends across the YRB. For example, pre-
cipitation increased in the source reaches of the YRB, its upper regions 
and the Loess Plateau39 between 1960 and 2020 but decreased else-
where in the basin35,38 (Fig. 2b). In addition, the frequency and concen-
tration of extreme precipitation events in the YRB is increasing38,40–42. 
This increase in extreme events has intensified flood risk and drought 
vulnerability, making the management of reservoirs and scheduling 
of water releases more complicated43.

Evapotranspiration
Between 1980 and 2020, the YRB had an annual average evapotran-
spiration of approximately 370.69 ± 55.92 mm yr−1. Thus, over 75% of 
yearly precipitation evaporates44, which far exceeds the global average 
(~60%)45. Despite marked differences between data sources (Supple-
mentary Table 1), all estimations consistently show an increasing trend 
in evapotranspiration — with up to 86% of the basin area showing a 
significant rise (α = 0.05) (Fig. 2c,d) whereas soil evaporation exhibits a 
decreasing trend at −0.42 mm yr−2 (P < 0.01)23,46. This increase in evapo-
transpiration is attributed primarily to increased temperatures and 
establishment of vegetation through ecological restoration24,46. Irriga-
tion also contributes to the increase in evapotranspiration in the YRB, 
accounting for up to 44.3% of the total increase in evapotranspiration 
in areas with large irrigation complexes41,44,47.

Soil moisture and groundwater
There is substantial variability in estimates of soil moisture in the 
YRB48,49. For instance, during 1980–2020, ERA5 data suggest a decrease 
in soil moisture, whereas Global Environmental Assessment Model 
(GLEAM) data show an increase (Fig. 2e). Observations of soil moisture 
show a decline from 1980, which is particularly pronounced in the 
middle and lower reaches of the YRB28,50,51 (Fig. 2f and Supplementary 
Table 2). This decrease in soil moisture might be attributed partly to 
enhanced evapotranspiration caused by increased vegetation cover11,52.

Although available data on groundwater are limited, most results 
suggest that groundwater in the YRB is declining (Supplementary 
Table 2). This decrease is driven primarily by intensive groundwater 
extraction53,54. Monitoring wells suggest that there is high spatial het-
erogeneity in groundwater changes55; however, large-scale spatial esti-
mations based on Gravity Recovery and Climate Experiment (GRACE) 
data show a continuous decline at a rate of approximately −3 mm yr−1 

Introduction
Anthropogenic pressures driven by population growth, economic 
development and rising water demand1–3 are increasingly threatening 
the integrity and sustainability of river basin ecosystems4–6, putting the 
future of over 2 billion people living in drylands at risk7,8. The Yellow 
River (also called the Huanghe) is the fifth-longest river in the world and 
spans arid to semi-arid regions (Supplementary ws. 1 and 2). However, 
the annual water discharge of the Yellow River is disproportionately 
lower than that of other major rivers. Anthropogenic impacts have 
profoundly altered — and continue to shape — the hydrological cycle, 
soil erosion, sediment transport and sediment deposition in the Yel-
low River Basin (YRB)9. Ecosystem degradation in the source region 
of the Yellow River10, severe soil erosion in the middle reaches, and 
depleted downstream streamflow have resulted in multiple socioeco-
nomic stresses alongside water resources conflicts and eco-economic 
poverty11–14.

The Yellow River has one of the highest sediment loads in the 
world13,15–17. The susceptibility of loess to erosion, combined with peri-
odic extreme rainfall events, sparse vegetation and long-term and 
intensive farming activities, have resulted in severe soil erosion on 
the Loess Plateau in the middle reaches of the Yellow River. This soil 
erosion contributes to the high sediment loads, increasing the risk of 
flooding16,18. Since the 1980s, reservoir operation, soil conservation 
and large-scale reforestation have reduced sediment flux by over 90% 
(ref. 16). The total water storage of the Yellow River reservoirs (50 billion 
cubic metres) now exceeds the total annual discharge9, marking the 
YRB as a controlled river basin where people effectively regulate its 
water and sediment19,20.

The YRB is facing multiple water scarcity challenges. The YRB sup-
ports 12% of the national population and 15% of arable land, with merely 
2% of China’s water resources21,22. Water withdrawal has increased 
to 80% of the Yellow River’s annual discharge, leading to perennial 
flow interruptions in the lower reaches that exceed the threshold for 
ecological collapse. Efforts to reduce soil erosion through ecologi-
cal restoration have also increased water consumption11, primarily 
driven by enhancement of evapotranspiration23,24. In addition, runoff 
reduction25 and soil moisture depletion26 have been observed across 
the basin (Fig. 1). The ecological, social and economic consequences 
of diminishing water availability are thus becoming critical issues for 
the YRB12,14.

In this Review, we discuss the impacts of human activities on 
water and sediment dynamics in the YRB. First, we outline long-term 
trends and the magnitude of changes in water flow and sediment load 
in the YRB. We then identify changes in human population, water 
use, land use, vegetation and economy and explore feedback loops 
between these changes and the basin hydrology. Finally, we discuss 
areas in which further research is needed to address uncertainties in 
human–river feedbacks and hydrological outcomes, including the 
feedback between precipitation and vegetation restoration, links 
between soil erosion and delta dynamics, and the cascading and lock-in 
effects of water governance.

Hydrological changes
Various data sources (Supplementary Table 1), including station obser-
vations, remote sensing data and reanalysis data, show that the com-
ponents of the YRB water cycle have changed substantially since the 
1950s (Fig. 1). For example, the discharge of the Yellow River has signifi-
cantly decreased9,27 at −5.78 × 108 m3 yr−1 during 1950–2020 (P < 0.01) 
without marked changes in precipitation. The vertical water vapour 
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in groundwater storage41,53,55,56. The decline in groundwater and soil 
moisture underscores the severity of water resource shortages in  
the YRB.

Glaciers and open-surface water bodies
The warming climate has reduced glacier area by 21.35 km2 (1960s–2014)  
and caused a decreasing trend in permafrost depth of −0.45 mm yr−1 
(1961–2017) in the source region of the YRB (Fig.  1). Approxi-
mately 35–42% of the runoff of the Yellow River originates from the 

Qinghai-Tibet Plateau57–61. Accelerated glacier retreat and permafrost 
melting alter the timing and magnitude of meltwater inputs, potentially 
causing seasonal shifts in water availability and exacerbating early 
spring flooding and late-season low flows62–64. Therefore, these changes 
might weaken water supply capacity and threaten water availability64–66.

The area of open-surface water bodies, including rivers, lakes, 
reservoirs and other terrestrial water bodies is increasing. The con-
struction and operation of large reservoirs in the basin to support the 
increased proportion of discharge used by humans (from less than 20% 

Reservoir capacity
364.76 × 108 m3

↑ Trend 14.17 × 108 m3 yr–1

(1980–2016)

Precipitation 
472.69 ± 94.16 mm yr–1

↑ Trend 1.24 mm yr–2

(1980–2020)

Glacier area
↓ Decreased 21.35 km2

Comparison of the first and 
second glacier catalogues 
(1960s–1980s to 2014)

Permafrost
↓ Trend –0.45 mm yr–1

(1961–2017)

Source reaches discharge
204.86 ± 119.73 × 108 m3 yr–1

No substantial trend
(1980–2020)

Human water use
369.97 ± 63.08 × 109 m3 yr–1

↑ Trend 3.62 × 109 m3 yr–2

(1998–2021)

Sediment load  
↓ Trend –0.24 × 108 t yr–2

(1952–2000)

Lower reaches discharge
195.00 ± 219.95 × 108 m3 yr–1

↓ Trend –1.96 × 108 m3 yr–2

(1980–2020)

Groundwater
↓ Trend –2.85 mm yr–1

(2005–2013)

Evapotranspiration 
370.69 ± 55.92 mm yr–1

↑ Trend 1.79 mm yr–2

(1980–2020)

Precipitation recycling ratio 
20.32% (2008–2017 average)

Soil moisture
↓ Trend –0.45 × 10–3 m3 m–3 yr–1

(1980–2020)

Open-surface water bodies
5,611.61 ± 1,443.97 km2

↑ Trend 67.40 km2 yr–1

(1990–2020)

Proportion of natural runo� 
used by humans
Increased from less than 20% in 
1950s to more than 85% in 2010s

Fig. 1 | The water cycle in the YRB. A schematic diagram of the magnitude 
and trends (for the period indicated in parentheses) of components of the 
Yellow River Basin (YRB) water cycle where such information is available and 
physically meaningful, including precipitation (data are from CN05 (ref. 197)), 
evapotranspiration (Global Environmental Assessment Model (GLEAM)v3.8  
(ref. 198)), soil moisture (ERA5 (ref. 199)), discharge for the source area (recorded 
at the Tangnaihai hydrological station (Supplementary Table 1)), discharge and 

sediment load in the lower reaches (recorded at the Lijin station (Supplementary 
Table 1)), the precipitation recycling ratio (calculated using the Lagrangian 
moisture tracking model data200), human water use (calculated based on the 
Yellow River Basin Water Resources Bulletin data (Supplementary Table 1)), open-
surface water bodies29, reservoir capacity9,19, glacier area65, permafrost depth66, 
groundwater53 and the proportion of human water withdrawals35. Many of these 
components of the YRB water cycle have changed substantially since the 1950s.
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a   Mean annual precipitation b   Spatial pattern of precipitation change 
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in the 1950s to over 85% in 2010s) has led to a rapid increase in the capac-
ity of open water bodies29. Remote sensing data show that between 1990 
and 2020 the area of open-surface water bodies increased by 27.5% 
during floods and 58.9% during the dry season29. The five largest reser-
voirs along the main course of the Yellow River account for 9.48% of the 
total area of water bodies in the basin29,35. The total capacity of the YRB 
reservoirs exceeds the average annual discharge of the Yellow River67,68.

River discharge
River discharge in the YRB has decreased, owing to increased evapo-
transpiration and changes in land use35,44 (Fig. 2g). Between 1950 and 
2020, there was no substantial overall decline in discharge in the upper 
reaches and source regions of the Yellow River. Conversely, discharge 
in the middle and lower reaches declined at −3.93 × 108 m3 yr−1 and 
−5.78 × 108 m3 yr−1 (P < 0.01), respectively. This decline has gradually 
stabilized since the year 20009,35,69 (Fig. 2h). Observed changes in actual 
discharge are linked not only to a warmer and drier climate, but also 
to increased human water consumption and changes in vegetation 
cover9,37,41. Hydrological data from multiple stations along the river 
indicate that downstream discharge is lower than upstream discharge 
owing to human water use27,41.

Vegetation restoration alters runoff by direct water consumption 
and through vegetation–climate feedbacks. Since the 1980s, the Yellow 
River has undergone extensive vegetation restoration70–72, and it has 
long been believed that increased vegetation cover reduces runoff, alters 
the distribution of precipitation and increases evapotranspiration73. 
However, the importance of feedbacks between vegetation and the 
atmosphere is being increasingly recognized. Observational data and 
numerical simulations reveal that increased vegetation cover intensifies 
land–atmosphere interactions, thereby enhancing the local water cycle 
and increasing precipitation74,75. Long-term observations (1980–2020) 
exhibit robust increasing trends (2.76 mm yr−2) of surface water yield 
over 82.3% of the Loess Plateau since revegetation commenced39. This 
seemingly counterintuitive trend highlights the importance of consider-
ing vegetation–climate feedbacks in assessing hydrological responses 
to large-scale vegetation changes and restoration efforts.

Changing sediment load and deposition
The Yellow River has historically been characterized by an extremely 
high sediment load5,15,16. This section outlines the temporal and spa-
tial patterns in sediment loads and the effects of efforts to reduce the 
sediment load.

Temporal trends
The Yellow River used to have one of the largest sediment loads in the 
world5 (Supplementary Fig. 3). Before 1000 A.D.15,16,76,77, sediment load 

in the Yellow River was at a level of approximately 0.2 Gt yr−1 (Fig. 3a) 
but then began to gradually increase owing to increasing soil erosion 
caused by cultivation and land use change on the Loess Plateau. In the 
1950s, sediment concentrations in the Yellow River surpassed 40 kg m−3 
(refs. 78,79) (Fig. 3b) with an average annual sediment load of 1.6 Gt yr−1. 
The sediment load peaked in 1958 at 2.1 Gt, far exceeding the natural 
baseline conditions15,76,77,80. The average sediment load of the Yellow 
River during 1961–1990 was 0.883 Gt yr−1, accounting for 5–10% of 
global sediment flux into the oceans5,81–83.

The once characteristically high sediment load of the Yellow River 
has diminished substantially owing to anthropogenic changes, includ-
ing vegetation restoration, landscape engineering and the construc-
tion of reservoirs and check dams16. The sediment load of the Yellow 
River declined at an average rate of −0.024 Gt yr−2 during the second 
half of the twentieth century. The average annual sediment load after 
2000 is 0.148 Gt, only 10% of that observed in the 1950s. In addition, 
the sediment concentration decreased by 75% after 2000 (Fig. 3a,b).

Spatial heterogeneity
Large quantities of sediment are transported from the Loess Plateau 
into the Yellow River16,17, which accumulate mostly in the lower reaches 
of the river and its estuary. Although over 60% of the Yellow River’s 
water discharge originates from the YRB above Lanzhou60, the sedi-
ment load at Lanzhou is merely 8% of that from the lower reach (Fig. 3c). 
The Loess Plateau in the middle reach contributes 90% of the sedi-
ment load entering the Yellow River16,70,83,84. In the lower reach of the 
Yellow River, the channel gradient decreases, leading to substantial 
sediment deposition85. Therefore, levees have been constructed in the 
lower reaches to control floods17. This intense sediment deposition has 
elevated the riverbed by over 10 m above the adjacent alluvial plain18,86, 
forming what is commonly known as a ‘hanging river’ constrained 
within levees18 (Supplementary Fig. 1). This phenomenon has led to 
frequent flooding, breaching and diversion events on the downstream 
Yellow River floodplain18,76,87,88. Moreover, the river channel contin-
ues to meander and silt up between the levees, with breaching of the 
elevated river further threatening the floodplain within, and outside, 
the levees89–91.

Sediment deposition in the lower reaches of the Yellow River has 
also led to the formation of alluvial plains and deltas. The modern 
Yellow River Delta, which began forming in 1855 following diversion 
of the Yellow River to its current estuary, has created approximately 
2.7 × 10³ km² of new land92. During the last 6,000 years, sediment depo-
sition has pushed the coastline 60 km into the Bohai Sea93. It is also esti-
mated that over 530 Gt of sediment have been deposited in the alluvial 
plains and deltas since 1128 A.D.77. This deltaic expansion has created 
land resources and formed ecologically valuable wetlands with high 

Fig. 2 | Time series and trends in water cycle components. a, A time series of 
annual mean precipitation in the Yellow River Basin (YRB) (the data are from 
CN05 (refs. 197,201), ERA5 (ref. 199), CHM-pre202 and CMFD203). The red dashed 
and solid lines show the mean values of multiple datasets and corresponding 
trend lines, respectively. b, The spatial patterns of precipitation change 
between 1980 and 2022 in the YRB (the data are from CN05 (ref. 197)), the 
stippled area indicates regions with a statistically significant change (α = 0.05). 
c, Same as in a but for the mean annual evapotranspiration (the data are from 
the Global Environmental Assessment Model (GLEAM)204, ERA5 (ref. 199), 
MODIS16 (ref. 205) and a synthesized data package206). d, Same as in b but for 
evapotranspiration (the data are from GLEAM v3.8 (ref. 198)). e, Same as in a but 

for mean annual soil water (the data are from GLEAM204, ERA5 (ref. 199), SMAP207 
and GLADS208). f, Same as in b but for soil moisture (the data are from ERA5 
(ref. 199)). g, A time series of mean annual water discharge (dashed line) and 
the average trend (solid line) measured at hydrological stations at Tangnaihai 
(TNH), Toudaoguai (TDG), Huayuankou (HYK) and Lijin (LJ). The data are derived 
from the Yellow River Conservancy Commission (Supplementary Table 1).  
h, The location of the hydrological stations in g and the change in water discharge 
measured at each between 1960 and 2020. The YRB has exhibited no marked 
changes in precipitation patterns, significant evapotranspiration increases, soil 
moisture depletion and changes in discharge that differ between upstream and 
downstream regions.
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biodiversity, various wildlife habitats and important over-wintering 
and breeding sites for migrating birds94,95. However, the stability of the 
Yellow River Delta is heavily influenced by changes in the dynamics of 
the sediment load95.

Responses to decreased sediment
Decreased sediment flux, as well as active reservoir regulation, have 
mitigated the problem of sediment deposition in the lower reaches of 
the Yellow River. Upstream regulation, including landscape engineer-
ing, ecological restoration and reservoir operation in the late twentieth 
century89,96, led to a continuous decrease in the sediment load, reducing 
the deposition rate in the lower reaches86. In 2000, the sediment load 
entering the lower reaches of the Yellow River dropped below 0.1 Gt yr−1, 
leading to a transition from a state of deposition to net erosion86. Fur-
thermore, the Water–Sediment Regulation Scheme implemented after 
2002 has accelerated the incision and widening of the channel86,96. 
Consequently, the elevation of the riverbed has decreased by up to 
3 m (refs. 96,97), the bankfull discharge (the maximum discharge that 
can be held within the channel) of the lower Yellow River increased by 
200% (ref. 98), and the river channel has stabilized89 (Fig. 3d and Sup-
plementary Fig. 4). These changes have benefited flood control in the 
lower reaches of the Yellow River, enabling further agricultural develop-
ment on the floodplain89. Whether this reduced sediment load can be 
sustained remains a critical challenge for communities within the YRB.

Nevertheless, the evolution of reservoirs and the riverbed in the 
lower reaches has posed challenges to the sustainability of strategies 
for the mitigation of sediment deposition and flooding. For example, 
the Sanmenxia and Xiaolangdi reservoirs, which were built to con-
trol water and sediment flux in the lower reaches of the Yellow River 
in 1961 and 1999, respectively, have undergone severe siltation99,100. 
Consequently, their storage capacity and the flushing efficiency in 
the lower reaches have reduced86,99,101. In addition, channel erosion 
downstream of the dams has led to riverbed incision and coarsening of 
the bed sediment, because fine sediment is preferentially entrained in 
water flow99,100. This bed coarsening makes the riverbed more difficult 
to erode99. Furthermore, a coarsened riverbed leads to the formation 
of larger sand dunes in the channel, which increases flow drag. Such 
extra drag has been proposed to exacerbate the risk of flooding during 
moderate and large floods97,102.

Reductions in sedimentation also have negative impacts on the Yel-
low River Delta, with delta expansion slowing since the 1990s79,95,103,104 
(Fig. 3d and Supplementary Fig. 4). Despite delta growth continuing 
near the estuary, coastal erosion has occurred further away from the 
estuary79,103, leading to concerns over potential ecological degradation 
resulting from delta shrinkage79,104,105. In addition, the delta is vulnerable 

to the effects of climate change such as sea level rise106; therefore, 
approaches to sediment regulation in the YRB must balance the need 
for flood protection in the lower reaches with the sustainability of the 
delta.

Anthropogenic changes
Population growth, urbanization and human activities have shaped 
the socio-ecological landscape of the YRB since the 1950s. This section 
explores the complex human dimensions driving changes within the 
YRB, including demographic shifts, patterns of water use, land use 
transformations and socioeconomic developments.

Changing population distribution
Population expansion and increased demands for food and energy 
have intensified water stresses in the YRB. The human population in 
the YRB rose from 10 million in the seventh century to 100 million in 
1950, 146 million in 1980 and 216 million in 2020 (Fig. 4a, Supplemen-
tary Table 1). Urbanization and population aging have led to shifts in 
lifestyle, consumption and production patterns, altering water use in 
various sectors and producing other environmental impacts107 (Fig. 4b). 
Rapid industrialization and urbanization correlate with population 
increase over the same periods108 (Fig. 4a). Despite the continuous 
population growth from 1980 to 2020, the per capita water withdrawal 
in the middle and lower reaches of the YRB declined from 396 m³ yr−1 in 
1980 to 310 m³ yr−1 in 2020, partly owing to stricter water resource man-
agement and transformations in production patterns. These changes 
highlight a pronounced spatial mismatch between water resource 
endowments and population distributions (Fig. 4). Moreover, water 
scarcity is further intensified by the prevalent migration of people 
towards economically developed downstream regions that are already 
experiencing water stress109–111.

Changes in water use
Water use in the YRB faces substantial pressures related to popula-
tion growth, urbanization and economic activities. Water demand 
has increased by 15.8% since the 1980s (Fig. 4c). Between 1980 and 
1997, water use increased at a rate of 1.02 km3 yr−2, mainly for irriga-
tion, leading to a 63.7% (ref. 112, during 1982–2014) decrease in the 
discharge of the Yellow River112–115. Industrial water use, the second 
largest sector, increased by 17.43% between 1980 and 2020. However, 
the rate of increase of industrial water use began to decline after 2000, 
changing from 0.28 km3 yr−2 before 1997 to −0.02 km3 yr−2 after 2000. 
Domestic water use, corresponding to water withdrawal for urban 
and rural household use and service activities, increased steadily at a 
rate of 0.17 km3 yr−2 from 1980 to 2020, owing to population growth, 

Fig. 3 | Spatial and temporal patterns of sediment transport. a, A time series 
of sediment load in the lower reaches of the Yellow River throughout history 
(yellow solid line highlights the trends; the data are from refs. 5,77) and from 
the 1950s to the present day (the solid line and shaded region indicate the linear 
regression and 95% confidence interval, respectively, with the solid line (right) 
indicating the periodic mean of the sediment load) in the context of key events. 
b, A box and whisker plot of changes in sediment concentration in the lower 
reaches of the Yellow River (centre line, the top and bottom of the box and 
whisker extent indicate the average value, 75% and 25% quantiles and maximum 
and minimum value in each period, respectively). c, Variation and spatial pattern 
in water (left side of inset plots) and sediment discharge (right side of inset 
plots) across the source (I), upper (II, III), middle (IV, V) and lower reaches (VI) 

of the Yellow River Basin (YRB). d, Temporal response of the bankfull discharge, 
(blue bars, the data are derived from ref. 98 and the Yellow River Conservancy 
Commission), delta area (yellow dots, the data are from refs. 95,103,104,209,210) 
and channel migration rate (blue dots) of the lower Yellow River in response to 
temporal variations in sediment flux (colour bar (top), the data are from ref. 89). 
The blue and yellow solid lines and shaded areas show the regression line of 
the generalized linear model and the 95% confidence interval for the channel 
migration rate and delta area variation, respectively. The data are sourced from 
the Yellow River Conservancy Commission (Supplementary Table 1) unless 
otherwise stated. The once-heightened sediment load of the Yellow River has 
decreased spatially and temporally, leading to changes in the downstream 
channel and delta.
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especially in urban areas. Consequently, the contribution of domestic 
water use to total water use increased from 6.5% in 1980 to 14.3% in 
2020. Ecological water use, referring to the water used to maintain 
ecosystems (including sediment flushing, planting trees and grass, 
recharging rivers and restoring dried-up regions), has expanded rapidly 
since the 2000s (0.31 km3 yr−2), owing to efforts to introduce policies 
to support sustainability of the river ecosystem116.

Although water management practices have decreased per 
capita water withdrawal since the 1980s, there is still a substantial 
disparity between water availability and demand. Severe drying-up 
of the river occurred during 1980s–2000s; consequently, approaches 
such as the Water Allocation Scheme (1998)117 and the construc-
tion of the Xiaolangdi Reservoir in 1999, were proposed to mitigate 
water scarcity12,118,119. These approaches led to a downward trend in 
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Fig. 4 | Population and human water use. a, Changes in the rural, urban 
and total population in the Yellow River Basin (YRB) (the data are from City 
Statistical Yearbook and the National Census of China) (Supplementary Table 1). 
b, The distribution of the YRB population in 1980 and 2020 (the data are from 
City Statistical Yearbook and the National Census of China) (Supplementary 
Table 1). c, The contribution of agricultural, industrial, domestic and ecology 
sectors to human water use in the YRB (the data are from Provincial Water 

Resource Bulletins (2000–2020); Nation Long-term Water Use Dataset of China 
(1965–2013)211 (Supplementary Table 1). d, Spatial distribution of per capita water 
withdrawal in the YRB in 1980 and 2020 (the data are calculated from human 
water use data and population data) (Supplementary Table 1). The changes in the 
population of the YRB and economic importance of each industry between 1980 
and 2020 have driven changes in water use across multiple sectors.
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water use (−0.715 km3 yr−2) before 2000. This trend stabilized after 2004  
(−0.02 km3 yr−2), being balanced by high human demand. The structure 
of water use has changed concurrently in response to these economic 
and social demand shifts. For example, the contribution of agricultural 
water use decreased from 81.44% to 63.75% between 1980 and 2020 but 
remains much higher than other sectors (Fig. 4c and Supplementary 
Fig. 5). Despite these measures, human water withdrawal still reached 
84% of the available surface water resources in 2020, breaching the 
40% water scarcity threshold120. Per capita water availability was still 
only 473 m³ yr−1 (ref. 121) until 2020, representing ~23% of the national 
average in China, and falling well below the global threshold for severe 
water scarcity (500 m³ yr−1) (Fig. 4d).

Land use and vegetation changes
Cultivation, over-grazing and human interventions have caused 
ecological degradation in the YRB. This degradation started in the 

eleventh century, accelerated in the eighteenth century18,40,70,122 
and persisted until the 1990s18,123. By 1850, anthropogenic land use 
exceeded natural land cover in 43% of the Loess Plateau (Fig. 5a). From 
1950 to 1960, the extent of cropland on the Loess Plateau increased 
by 5 × 106 ha, further reducing natural vegetation coverage70,124. In the 
source region, grassland shrinkage, degradation, and desertification 
have been continuous since the 1970s10,125; consequently, vegetation 
cover decreased in 67% of the source region between 1982 and 2001126. 
This severe degradation could lead to increased soil erosion, increased 
sediment flux into the Yellow River and, consequently, intensified 
channel diversion127.

In the frozen regions of the YRB, anthropogenic warming will alter 
sediment flux and vegetation growth. Enhanced melting of permafrost 
areas in the source regions of the Yellow River on the Tibetan Plateau 
has increased sediment flux and channel mobility127. Conversely, the 
effect of increasing temperatures in warmer areas with seasonally 
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Fig. 5 | Land use, vegetation and economic changes. a, Spatial distribution of 
the years when the proportion of anthropogenic land use exceeded 50% in the 
Yellow River Basin (YRB) (the data are from HYDE 3.3 (ref. 212)). b, Trend in leaf 
area index (LAI) between 1982 and 2020 (data from GIMMS LAI4g213). c, A chord 
diagram of land use change in the YRB between 1990 and 2020 (the data are from 
CLCD214, the thickness of the chords represents the area of land use change with 

the chord colour representing the new land use). d, The total gross value added 
(GVA) (solid line) and contribution of agriculture, industry and service to the 
GVA (coloured bars) in the YRB (1980–2020) (the data are from City Statistical 
Yearbook and the National Census of China) (Supplementary Table 1). Since 
the 1980s, the YRB has experienced rapid economic growth and ecological 
restoration efforts have increased vegetation coverage. CNY, Chinese Yuan.
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frozen ground is modulated by enhanced vegetation growth, which 
stabilizes river banks and reduces channel migration127.

Various landscape engineering approaches have been imple-
mented to control soil erosion and reduce sediment flux into the Yellow 
River. The construction of check dams, which intercept sediment on 
hillsides or in valleys, was promoted and implemented in the 1950s; by 
2011, there were over 58,000 check dams in the YRB128,129. Moreover, 
terrace farming was promoted in the middle reaches of the Yellow 
River16,70,130 with the extent of terraces reaching 6.46 × 104 km2 by 2022 
(ref. 131). These measures reduced sediment flux into the Yellow River 
in addition to ensuring that agricultural productivity was maintained 
to sustain a growing population70,129,132. However, there is a limit on 
the ability of landscape engineering to reduce sediment yield16,128. For 
instance, check dams can silt up and lose their retention capacity within 
10 years owing to high sediment production128.

Various ecological and conservation projects have been imple-
mented in the YRB, leading to increased vegetation coverage, which 
mitigates soil erosion. Such projects began in the 1980s and emerged 
rapidly throughout the late twentieth century, including the Three 
North Shelterbelt Forest Program (1978)8,123,133, which promoted affor-
estation, the Natural Forest Protection Program (1998)8,123,134,135, which 
aimed to prevent deforestation, and the Grain for Green Program 
(1999)8,123,135,136, which supported the conversion of cropland to for-
est or grassland. These projects have enhanced forest and grassland 
vegetation substantially in the YRB8,123,135,137 (Fig. 5b,c). Between 1982 
and 2020, 71% of the YRB experienced a significant (P < 0.05) increase 
in leaf area index (Fig. 5b). In addition, the area of grassland and forest 
increased by 4.29 × 103 km2 (1.0%) and 1.69 × 104 km2 (22.8%), respec-
tively, between 1990 and 2020 (Fig. 5c), and the fractional vegetation 
cover increased by 17% between the years 1999 and 2018138. The normal-
ized difference vegetation index increased in over 60% of the area in 
the source region during the 2000s, as barren land was converted to 
grassland139,140. In addition, in the Loess Plateau, vegetation coverage 
increased from 31.6% in 1999 to 59.6% in 2013, reaching 65% in 2021 
owing to the conversion of cropland to grasslands and forests11,16,141–143 
(Supplementary Fig. 2).

Economics and policies
Since 1980, the YRB has experienced rapid economic growth, placing 
increasing demands on water resources. The gross value added (GVA) 
of the YRB increased by an average of 1.78% per year between 1980 and 
2020 (Fig. 5d). In this period, the contribution of agriculture to the 
total GVA in the YRB decreased from 24.5% to 7.5%, the share of service 
GVA rose from 27.6% to 51.4%, and the industrial share decreased from 
47.9% to 41.3% (Fig. 5d and Supplementary Fig. 5). Along with these 
changes, the efficiency of industrial water use increased144,145, high 
water-consuming and energy-consuming industries were replaced146, 
and infrastructure was enhanced to promote water-saving technology 
and establish standard water quotas across sectors147.

As water resources become the primary factor restricting eco-
nomic growth, water-related policies have been proposed to govern the 
YRB. Before the 1980s, initiatives concentrated primarily on the use of 
large-scale engineering projects, such as reservoirs and levees, to meet 
the increasing demands for agricultural, industrial and domestic water 
and to control floods. For example, the Sanmenxia and Liujiaxia Dams 
were constructed to control floods and generate hydropower. Since 
1980, the focus has shifted to comprehensive institutional governance19 
(Supplementary Fig. 6). For instance, the Water Allocation Scheme 
(1987)148 was the first unified plan to allocate Yellow River water across 

provinces, laying the foundation for coordinated basin management. 
Although the goal of halting growth in water usage was not achieved in 
the first decade, the withdrawal of water was strictly regulated as the 
administrative authority of the Yellow River Conservancy Commission 
expanded. In 2010, the Yellow River Conservancy Commission won the 
Lee Kuan Yew Water Prize149 for its complex management system9,20, 
which prevented the Yellow River from drying up. The construction 
of the Xiaolangdi Reservoir in 1999 strengthened integrated water 
management through its multifunction purpose of flood control, water 
and sediment regulation and maintaining ecological basic flows105,150,151.

After the peak in water use in 1997, enhanced water quota policies, 
including the Water Allocation Scheme (1998)117, were introduced to 
further strengthen unified water management from the supply side. 
Policies to transfer water rights and reform agricultural water prices 
were also implemented from the demand side152,153 (Supplementary 
Fig. 6). The aim was to give agrarian water rights to the industrial sector 
in exchange for fees to develop water infrastructure154. From the 2010s 
to the 2020s, several technique-guided policies, such as Integrated Fer-
tilizers and Water Use Management in Agriculture155, were released to 
promote water-saving irrigation technologies (Supplementary Fig. 6). 
With additional further infrastructure and policies, such as Water 
Diversion from South to North156, Strict Water Management157 and the 
Yellow River Protection Law (2022)158, efficient use of water resources 
has become a performance indicator for local administrative officials.

Interplay of human and hydrological systems
Anthropogenic impacts have reshaped the hydrological dynamics 
of the YRB and, over time, led to further feedbacks for society. Popu-
lation growth and agricultural expansion have affected the YRB for 
thousands of years, resulting in the removal of vegetation, severe soil 
erosion, and increased sediment loads17. Since the 1960s, anthropo-
genic activities have intensified owing to a growing population and 
food demands. Modernization and industrialization have stimulated 
engineering projects, such as reservoir construction, which alter water 
flow and sediment transport. Meanwhile, ecological restoration pro-
jects have altered vegetation patterns and reduced water and sedi-
ment loads. This section examines the feedback mechanisms between 
anthropogenic interventions and hydrological changes, identifying 
four hypothetical feedback loops (Fig. 6) and suggesting potential 
future changes. Detailed institutional and engineering solutions, plans 
and future potential changes are given in Supplementary Fig. 6 and 
Supplementary Table 3.

Feedback loops
Challenges have emerged from the ongoing intertwined interactions 
between humans and water, with uncertainties arising from institu-
tional, social and technical transitions and climatic changes159–161. Over 
different periods, the strength and influence of these drivers have var-
ied substantially, leading to complex feedback loops that govern the 
interactions between human activities and the natural environment. 
These shifts have caused ecological and hydrological transformations, 
which have often reinforced each other and complicated efforts to bal-
ance environmental protection with economic and social development 
in the YRB.

The supply expansion feedback loop during 1960–1980 was char-
acterised by expanding water supply programmes to meet social and 
economic development demands, which reduced water discharge19 
(Fig. 6a). Rapid socioeconomic development (for example, the GVA) 
in this arid and semi-arid region relies heavily on water resources162. 
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Therefore, engineering infrastructure, such as diversion projects, 
were developed to boost water supply. This water supply supported 
further economic activities, creating an accelerating feedback loop. 
The increasing demand, driven by engineering-intensive development, 
led to the appropriation of water resources from external regions and 
other stakeholders within the basin163,164. The lack of adequate policies 
and institutional constraints led to further scrambles for water alloca-
tion and drying-up crises for streamflow165. Moreover, urbanization 
and land development restrict vegetation cover, further impacting 
discharge and sediment flux19,124.

Between 1980 and 2000, water scarcity became a key driver of 
institutional shifts in the YRB leading to strategies to restrict water 
demand20. Population growth, economic development and urbani-
zation continued to drive demand (for example, food and energy). 
Therefore, water scarcity curbed uncontrolled exploitation through 
institutional reforms and monetary policies. However, mismatched 
institutional structures, under which the provinces engage in unco-
ordinated competition for scarce water owing to economic growth 
pressures, led to intensified exploitation of water resources, fuelling 
disputes over the fairness of governance outcomes166,167 (Fig. 6b). In the 
late 1990s, ecological restoration efforts began to emerge to mitigate 
some of the adverse effects (such as, drying up113, wetland shrinkage94 
and increasing soil salinization168) of past practices169.

A complex governance loop emerged throughout 2000–2020 in 
which water use efficiency increased via demand-side and supply-side 
management118 and strategies such as water diversions and ecological 
projects were introduced to enhance vegetation and reduce sediment 
yield16. Increased diversity in policy and governance enhanced water 
use efficiency118, reducing overall water consumption (Fig. 6c). Mean-
while, ecological conservation and restoration efforts began to control 
soil erosion more effectively with unified regulation also enhancing the 
management of sediment deposition. Large-scale vegetation conser-
vation and landscape engineering projects were also implemented to 
control severe soil erosion in the YRB.

However, vegetation restoration projects also altered hydrologi-
cal processes (Fig. 6c). For example, the rapid increase in vegetation 
has increased evapotranspiration, reduced runoff and discharge, 
and caused soil moisture depletion26,50,170. By 2021, vegetation in the 
eroded sediment areas of the middle reaches of the Yellow River had 
nearly recovered to its ecological threshold level (65%)142. Downstream 
water discharge dropped by 38% from 1971–1990 to 1991–2016, with 
vegetation increase responsible for up to 26% of this decline16,25,171. 
The depletion of soil moisture and terrestrial water storage has raised 
concerns about hydrological sustainability in the YRB. In 2008, the 
maximum depth of the dried soil layer reached 5 m, primarily in the 
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forest regions26,50,172,173. This depletion limits the future effects of eco-
logical restoration and threatens water resource availability in the 
middle and lower reaches of the Yellow River11,174,175. Therefore, instead 
of extensive afforestation, mixtures of trees, shrubs and herbaceous 
plants adapted to local conditions should be prioritized to balance 
hydrological sustainability and ecological effectiveness13. It is also 
possible that increased vegetation could enhance local water cycles 
and increase precipitation; however, the degree and importance of 
this feedback are uncertain39,74,75.

Future changes
Climate change is expected to alter future water availability (Fig. 6d). 
Engineering and institutional approaches to address soil erosion and 
excessive water withdrawals have curbed the overall deterioration 
in water resources. However, dependence on more extensive human 
interventions has resulted in a legacy of maximizing water resource 
utilization19. The increasing frequency and severity of extreme events 
under the impacts of climate change might diminish the stability of 
water supply and challenge this water management system, which was 
optimized under previous human–river relationships. Glacial melting176 
will also lead to the loss of stored water. Future water resources in the 
YRB are projected to increase by 0.218 ± 0.201 km3 yr−1 under various 
climate change scenarios and models (Supplementary Fig. 6). These 
perceived improvements in water availability could lead to increased 
dependence on external factors, such as increasing precipitation. 
Underestimating the risks associated with water crises could weaken 
the motivation for proactive management and policy interventions 
in the short term. Given that institutional reforms often exhibit inher-
ent delays, there might be further water depletion in the long term177, 
increasing the vulnerability of the system.

The compound impacts of reduced cropland area, population 
decrease178 and improvements in the efficiency of water use are pro-
jected to mitigate human water demand in the late twenty-first century 
(Fig. 6d). Models incorporating fertility policies, well-being and eco-
nomic growth project that the population of the YRB will peak around 
2020–2030 (Supplementary Fig. 6). However, an ageing population 
might lead to more uncertain behaviours in water use (Supplementary 
Fig. 5). Ongoing demographic change, production shifts and climate 
change are likely to cause a decline in cropland area until the 2100s, 
leading to reduced agricultural water demand. In addition, socio-
economic and technological transitions have led to improvements 
in the efficiency of water use. Human water demand, modelled by 
integrating complex system transitions — including future population 
changes, land use changes, economic cycle fluctuations179, technologi-
cal changes and shifts in human lifestyle180 — will potentially reach a 
peak of 74 km³ yr−1 in the mid-twenty-first century, still exceeding the 
2020 level of 67 km³ yr−1.

Other projected changes, such as urbanization, forest and grass-
land expansion and increased ecological water use, could increase 
water demand for humans and the broader ecosystem. Urbanization 
is expected to continue to increase and is projected to reach 75–90% 
by the 2100s (Supplementary Fig. 6), accelerating the increase in 
domestic, food and industrial water use. The expansion of forests 
and grasslands remains possible under different scenarios, driven by 
ongoing ecological restoration efforts and climate change (Supple-
mentary Fig. 6). This potential increase in vegetation could pose risks 
to domestic, industrial, and irrigated water availability. Moreover, the 
share of ecological water use (for example, to supplement wetland, 
groundwater and urban greenspace) is predicted to grow and compete 

with human water use for social and economic activities12 and threaten 
food production181. High water stress in the YRB will persist unless there 
is a shift in the demand109,181.

Complex anthropogenic–hydrological feedbacks must be con-
sidered when negotiating the conflict between human demands and 
water. Approaches such as landscape engineering, reservoir operation 
and ecological restoration have been used to address the problem of 
sedimentation in the YRB16. However, inertia in resource allocation 
might result in diminishing marginal returns and a reduced ability to 
respond to emerging risks. Challenges such as reaching engineering 
saturation, soil moisture depletion and limitations on water resources 
can seriously compromise the efficiency of these sediment reduction 
strategies11,128,174. Therefore, it is important to design feedback loops 
to be more adaptive when facing such uncertain and complex risks.

Summary and future perspectives
Despite being historically the world’s most sediment-laden major river, 
the YRB is now experiencing a simultaneous decline in water discharge, 
soil moisture and groundwater alongside rising human water consump-
tion and evapotranspiration. Consequently, the overall flux of the water 
cycle is intensifying, whereas water resource storage is diminishing. 
Since the mid-twentieth century, large-scale engineering works and 
policy reforms have reduced sediment loads. Compounded by drivers 
such as land use transformation, escalating urbanization, and evolving 
water usage patterns, these projects have also altered eco-hydrological 
processes. The complex interplay of hydrological change, human inter-
vention and institutional policies in the YRB exemplifies a new, mul-
tifaceted era in arid river basin management: this era is characterized 
by short-term water supply successes but heightened long-term risks, 
such as groundwater depletion and mounting agricultural dependence 
on irrigation. These risks foreshadow a potential water crisis that, when 
combined with future climate pressures, underscores the need for 
transformative and adaptive water governance in the YRB.

Several unresolved challenges remain for the YRB that require 
further hydrological research, and are issues shared by major river 
basins globally. First, the complexities surrounding how vegetation 
restoration regulates river systems, especially its feedback with pre-
cipitation, remain poorly understood but could have important impli-
cations for arid rivers undergoing restoration or deforestation, such 
as the Tarim176, Congo watershed182 and Amazon rivers183,184. Second, 
managing the delicate balance between controlling soil erosion and 
safeguarding increasingly urbanized delta ecosystems introduces 
scientific and policy dilemmas, as seen in major deltas185, such as those 
of the Mekong186, Rhine187 and Yangtze188 rivers. Third, the unintended 
consequences of water management policies167 — such as shifting stress 
from surface to groundwater resources — raise questions concerning 
the sustainability of interventions across transboundary rivers189, 
including the Colorado, Murray and Orange rivers190. Thus, further 
research on the YRB is important for investigating globally relevant 
eco-hydrological challenges and developing innovative, transferable 
solutions.

Comprehensive monitoring is needed to better understand 
arid-region river systems such as the YRB3,8,191. Monitoring in the YRB 
focuses primarily on flux measurements, such as water and sediment 
discharge, and evapotranspiration for water resource management. 
There is a shortage of dynamic monitoring data of water storage in 
groundwater, soil moisture and glaciers. Measurements of these water 
storage components rely on coarse estimations using large-scale mod-
els or remote sensing methods. The long-term decline in water storage 
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across the YRB could lead to water resource crises that might be over-
looked by traditional monitoring flux metrics192,193. Thus, comprehen-
sive monitoring networks are needed to capture dynamic variables 
of the water cycle, develop a digital twin of the river system based on 
real-world data and consider the economic and technical feasibility 
of different policies and forecasts194. Such monitoring and simulation 
technologies have been widely used in water resource management 
in urban areas to improve water use efficiency. However, data are still 
lacking in sparsely populated, underdeveloped regions. Addressing 
these data limitations will enable integrated modelling of human–water 
systems and water management within the river basin195.

Adaptive capacity in regional water management practices is 
necessary to bridge the gap between science and policy, facilitat-
ing responses to immediate challenges and long-term uncertainties 
in a changing climate and socioeconomic context. The unexpected 
outcomes of water management policies, such as the water quota 
policy20, reveal the complexity of river basins. Theoretical and practi-
cal gaps in the pliability of scientific research and policy-making can 
lead to long-term legacy effects, despite achieving success in address-
ing immediate challenges. The lag between intervention and impact 
can span decades, resulting in inequality in access to water resources 
among various stakeholders across different periods and regions2. 
Efforts to enhance adaptive capacity must balance the competing 
objectives of economic development, ecological preservation and 
social equity1. For instance, future work should aim to explore the 
carrying capacity of water resources; reducing human interference; 
prioritizing nature-based solutions; the benefits of adaptive policies 
such as water rights trade, adapting forestry, shrubs and grassland to 
environmental conditions; and reforming rigid institutions1,196.

It is essential that scientific knowledge from different regions 
and cooperation across areas is used to achieve adaptive water 
governance189. Therefore, sustained investment in interdisciplinary 
collaborative platforms, including funding, the development of 
young scientists, international partnership networks, and standard-
ized assessment indicators is needed to integrate the strengths of all 
parties and bridge the knowledge gap in sustainable river management.

Data availability
Supplementary Table 1 outlines details of the datasets used in Figs. 1–4.
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