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Abstract

Sections

The Yellow River Basin supports a population of 200 million people and
contains 15% of arable land in China. Water scarcity in the regionis being
exacerbated by climate change and human activities. In this Review, we
discuss anthropogenicimpacts on the hydrological cycle and sediment
dynamics of the Yellow River since the 1950s. The Yellow River had one
of the largest sediment loads in the world, peaking at 2.1 Gt yrin 1958.
Such high sediment loads elevated flood risk; therefore, reservoirs,
conservation and revegetation projects were implemented, reducing
sediment transport by 90% since the 1980s. However, these efforts also
impacted the hydrology of the Yellow River Basin, leading to anincrease
in evapotranspiration fluxes (1.79 mm yr?,1980-2020) and reduced
runoff. Inaddition, human water use has increased by 15.8% since the
1980s. The resulting reductions in soil water storage and intensification
of the vertical water cycle foreshadow potential resource crises and will
potentially lead toirreversible ecosystem degradation. Predicting the
outcomes of water management policies and engineering projects is
essential but highly complex owing to feedback loops and interactions
between human activities and hydrological changes. Addressing these
challenges, which are also faced by other arid-region rivers, will require
dynamic monitoring of water storage and improved understanding of
human-hydrological interactions.
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Introduction

Anthropogenic pressures driven by population growth, economic
development and rising water demand' > are increasingly threatening
theintegrity and sustainability of river basin ecosystems* ¢, putting the
future of over 2 billion people living in drylands at risk”®. The Yellow
River (also called the Huanghe) is the fifth-longest river in the world and
spans arid to semi-arid regions (Supplementary ws.1and 2). However,
the annual water discharge of the Yellow River is disproportionately
lower than that of other major rivers. Anthropogenic impacts have
profoundly altered —and continue to shape — the hydrological cycle,
soil erosion, sediment transport and sediment deposition in the Yel-
low River Basin (YRB)’. Ecosystem degradation in the source region
of the Yellow River'®, severe soil erosion in the middle reaches, and
depleted downstream streamflow have resulted in multiple socioeco-
nomic stresses alongside water resources conflicts and eco-economic
poverty" ™,

The Yellow River has one of the highest sediment loads in the
world™". The susceptibility of loess to erosion, combined with peri-
odic extreme rainfall events, sparse vegetation and long-term and
intensive farming activities, have resulted in severe soil erosion on
the Loess Plateau in the middle reaches of the Yellow River. This soil
erosion contributes to the high sediment loads, increasing the risk of
flooding'®%. Since the 1980s, reservoir operation, soil conservation
and large-scale reforestation have reduced sediment flux by over 90%
(ref.16). The total water storage of the Yellow River reservoirs (50 billion
cubic metres) now exceeds the total annual discharge’, marking the
YRB as a controlled river basin where people effectively regulate its
water and sediment™*.

The YRBis facing multiple water scarcity challenges. The YRB sup-
ports 12% of the national population and 15% of arable land, with merely
2% of China’s water resources?-*2, Water withdrawal has increased
to 80% of the Yellow River’s annual discharge, leading to perennial
flow interruptions in the lower reaches that exceed the threshold for
ecological collapse. Efforts to reduce soil erosion through ecologi-
cal restoration have also increased water consumption®, primarily
driven by enhancement of evapotranspiration®?*, In addition, runoff
reduction” and soil moisture depletion® have been observed across
the basin (Fig. 1). The ecological, social and economic consequences
of diminishing water availability are thus becoming critical issues for
the YRB'>™,

In this Review, we discuss the impacts of human activities on
water and sediment dynamics in the YRB. First, we outline long-term
trends and the magnitude of changes in water flow and sediment load
in the YRB. We then identify changes in human population, water
use, land use, vegetation and economy and explore feedback loops
between these changes and the basin hydrology. Finally, we discuss
areas in which further research is needed to address uncertainties in
human-river feedbacks and hydrological outcomes, including the
feedback between precipitation and vegetation restoration, links
betweensoil erosion and deltadynamics, and the cascading and lock-in
effects of water governance.

Hydrological changes

Various datasources (Supplementary Table1), including station obser-
vations, remote sensing data and reanalysis data, show that the com-
ponents of the YRB water cycle have changed substantially since the
1950s (Fig. 1). For example, the discharge of the Yellow River has signifi-
cantly decreased”” at —5.78 x 10 m® yr ' during 1950-2020 (P < 0.01)
without marked changes in precipitation. The vertical water vapour

cycle hasintensified, with increased evapotranspiration but with soil
moisture, groundwater and glacier storage all decreasing*"*, The
risinghuman demand for water resources has drivenarapidincreasein
water withdrawals. Expansioninthe number and area of reservoirs has
alsoledtoanincreasein openwater bodies, which are then exposed to
evaporation®, Consequently, the water cycle of the YRB has exhibited
adecrease in blue water (available surface water and groundwater),
anincrease in green water flow (evapotranspiration, especially tran-
spiration) and a reduction in green water storage (soil moisture)®*?,
asnow discussed.

Precipitation

Long-term average annual precipitation in the YRB is approximately
472.69 +94.16 mmyr, decreasing from southeast to northwest and
predominantly concentrated between May and September®***. Dur-
ing 1960-2000, precipitation in the YRB decreased at —2.21 mm yr™>
(P<0.05)*, but subsequently increased with a rate of 3.12 mm yr™
in2000-2022 (P < 0.05) (Fig. 2a). Precipitation thus does not display a
clear statistically significant long-term trend. There is substantial spa-
tial variability in precipitation trends across the YRB. For example, pre-
cipitationincreasedinthe source reaches of the YRB, its upper regions
and the Loess Plateau® between 1960 and 2020 but decreased else-
whereinthe basin®*® (Fig. 2b). In addition, the frequency and concen-
tration of extreme precipitation eventsin the YRBis increasing®°~*%,
Thisincrease in extreme events hasintensified flood risk and drought
vulnerability, making the management of reservoirs and scheduling
of water releases more complicated*.

Evapotranspiration

Between 1980 and 2020, the YRB had an annual average evapotran-
spiration of approximately 370.69 + 55.92 mm yr™.. Thus, over 75% of
yearly precipitation evaporates**, which far exceeds the global average
(-60%)*. Despite marked differences between data sources (Supple-
mentary Table1), all estimations consistently show anincreasing trend
in evapotranspiration — with up to 86% of the basin area showing a
significantrise (a = 0.05) (Fig. 2c,d) whereas soil evaporation exhibits a
decreasing trend at—0.42 mm yr2 (P < 0.01)**, This increase in evapo-
transpiration is attributed primarily to increased temperatures and
establishment of vegetation through ecological restoration®*°. Irriga-
tionalso contributesto theincrease in evapotranspirationinthe YRB,
accounting for up to44.3% of the totalincrease in evapotranspiration
in areas with large irrigation complexes****,

Soil moisture and groundwater
There is substantial variability in estimates of soil moisture in the
YRB***, Forinstance, during1980-2020, ERAS data suggest adecrease
in soil moisture, whereas Global Environmental Assessment Model
(GLEAM) datashow anincrease (Fig. 2e). Observations of soil moisture
show a decline from 1980, which is particularly pronounced in the
middle and lower reaches of the YRB*****! (Fig. 2f and Supplementary
Table 2). This decrease in soil moisture might be attributed partly to
enhanced evapotranspiration caused by increased vegetation cover™,
Althoughavailable data on groundwater are limited, most results
suggest that groundwater in the YRB is declining (Supplementary
Table 2). This decrease is driven primarily by intensive groundwater
extraction®**, Monitoring wells suggest that there is high spatial het-
erogeneity in groundwater changes®’; however, large-scale spatial esti-
mations based on Gravity Recovery and Climate Experiment (GRACE)
data show a continuous decline at a rate of approximately -3 mm yr™
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Glacier area
V Decreased 21.35 km?

Comparison of the first and
second glacier catalogues
(1960s-1980s to 2014)

Precipitation

472.69+94.16 mm yr
1 Trend 1.24 mm yr-
(1980-2020)

Reservoir capacity
364.76 x108 m?

1 Trend 14.17x108 m? yr-!
(1980-2016)

Permafrost
V Trend -0.45 mm yr-!
(1961-2017)

Fig.1|The water cycle in the YRB. A schematic diagram of the magnitude

and trends (for the period indicated in parentheses) of components of the
Yellow River Basin (YRB) water cycle where such information is available and
physically meaningful, including precipitation (data are from CNOS5 (ref. 197)),
evapotranspiration (Global Environmental Assessment Model (GLEAM)v3.8
(ref.198)), soil moisture (ERAS (ref.199)), discharge for the source area (recorded
at the Tangnaihai hydrological station (Supplementary Table 1)), discharge and

Precipitation recycling ratio
20.32% (2008-2017 average)

Evapotranspiration
370.69+55.92 mm yr!
1 Trend 1.79 mm yr2
(1980-2020)

Proportion of natural runoff
used by humans

Increased from less than 20% in
1950s to more than 85% in 2010s

Sediment load
J Trend -0.24 x108 t yr2
‘ (1952-2000)

Lower reaches discharge
195.00 £219.95 %108 m3
V Trend -1.96 x108 i
(1980-2020)

sedimentload in the lower reaches (recorded at the Lijin station (Supplementary
Table1)), the precipitation recycling ratio (calculated using the Lagrangian
moisture tracking model data®*’), human water use (calculated based on the
Yellow River Basin Water Resources Bulletin data (Supplementary Table 1)), open-
surface water bodies”, reservoir capacity””, glacier area®, permafrost depth®,
groundwater® and the proportion of human water withdrawals®. Many of these
components of the YRB water cycle have changed substantially since the 1950s.

in groundwater storage**>*>*°, The decline in groundwater and soil
moisture underscores the severity of water resource shortages in
the YRB.

Glaciers and open-surface water bodies

Thewarming climate hasreduced glacier areaby 21.35 km? (1960s-2014)
and caused a decreasing trend in permafrost depth of —0.45 mm yr™!
(1961-2017) in the source region of the YRB (Fig. 1). Approxi-
mately 35-42% of the runoff of the Yellow River originates from the

Qinghai-Tibet Plateau®” . Accelerated glacier retreat and permafrost
melting alter the timing and magnitude of meltwater inputs, potentially
causing seasonal shifts in water availability and exacerbating early
spring flooding and late-season low flows**°*. Therefore, these changes
might weaken water supply capacity and threaten water availability®*°.

The area of open-surface water bodies, including rivers, lakes,
reservoirs and other terrestrial water bodies is increasing. The con-
struction and operation of large reservoirs in the basin to support the
increased proportion of discharge used by humans (from less than20%

Nature Reviews Earth & Environment


http://www.nature.com/natrevearthenviron

Review article

a Mean annual precipitation

=

IS 900

E

S

2 700

S

s

9]

® 500

a

©

3

c

5: 300 i

1960 1970 1980 1990 2000 2010 2020

Year

————— CNO5 ERA5 --- Average

————— CHM-pre CMFD  —— Average trend

C Mean annual evapotranspiration

T

5 600

€

E

§ 500

®

E e N A e

2 400 T NN A

e »

s

° e

% .

@ %0 T \ T T
1980 1990 2000 2010 2020

Year
,,,,, GLEAM ERA5S -==" Average
————— Synthesized MODIS16 —— Average trend

€ Mean annual soil water

~ 040

£

3 0.35

[

5 0304

ko]

o

g 025"

= .

@ 020+

015
1980 1990 2000 2010 2020

Year

————— GLEAM ERAS ---- Average

----- SMAP GLADS  —— Average trend

d Mean annual water discharge

& 1000 —
€
© 800
[}
2 600
[
<
O
2 400 |
hel
E] L
2 200 ‘
< 3
<
04 T T T T T T T
1950 1960 1970 1980 1990 2000 2010 2020
Year
-—-- TNHannual - TDG annual HYK annual LJ annual
—— TNH trend —— TDG trend HYK trend LJ trend

b spatial pattern of precipitation change

d Spatial pattern of evapotranspiration change

f spatial pattern of soil water change

h change in water discharge

TDG

HYK

-4

-1

-2

mm yr2

1023 mé m=3yr!

108 me yr!

Nature Reviews Earth & Environment


http://www.nature.com/natrevearthenviron

Review article

Fig.2| Time series and trends in water cycle components. a, A time series of
annual mean precipitation in the Yellow River Basin (YRB) (the data are from
CNO5 (refs.197,201), ERAS5 (ref. 199), CHM-pre?> and CMFD??). The red dashed
and solid lines show the mean values of multiple datasets and corresponding
trend lines, respectively. b, The spatial patterns of precipitation change
between 1980 and 2022 in the YRB (the data are from CNOS5 (ref. 197)), the
stippled area indicates regions with a statistically significant change (a = 0.05).
c,Same asinabut for the mean annual evapotranspiration (the data are from
the Global Environmental Assessment Model (GLEAM)?**, ERAS (ref.199),
MODIS16 (ref.205) and a synthesized data package®®®). d, Same as in b but for
evapotranspiration (the data are from GLEAM v3.8 (ref. 198)). e, Same asin a but

for mean annual soil water (the data are from GLEAM?**, ERAS5 (ref.199), SMAP?”
and GLADS?*). f, Same as in b but for soil moisture (the data are from ERA5
(ref.199)). g, Atime series of mean annual water discharge (dashed line) and

the average trend (solid line) measured at hydrological stations at Tangnaihai
(TNH), Toudaoguai (TDG), Huayuankou (HYK) and Lijin (L)). The data are derived
from the Yellow River Conservancy Commission (Supplementary Table1).

h, Thelocation of the hydrological stations in g and the change in water discharge
measured at each between 1960 and 2020. The YRB has exhibited no marked
changes in precipitation patterns, significant evapotranspiration increases, soil
moisture depletion and changes in discharge that differ between upstream and
downstream regions.

inthe1950sto over 85%in 2010s) hasled to arapidincreasein the capac-
ity of openwater bodies”. Remote sensing datashow that between1990
and 2020 the area of open-surface water bodies increased by 27.5%
during floods and 58.9% during the dry season®. The five largest reser-
voirs along the main course of the Yellow River account for 9.48% of the
total area of water bodies in the basin®*. The total capacity of the YRB
reservoirs exceeds the average annual discharge of the Yellow River®”®,

River discharge

River discharge in the YRB has decreased, owing to increased evapo-
transpiration and changes in land use*** (Fig. 2g). Between 1950 and
2020, there was no substantial overall declinein dischargein the upper
reaches and source regions of the Yellow River. Conversely, discharge
in the middle and lower reaches declined at -3.93 x 108 m*yr™ and
-5.78 x108 m*yr™ (P< 0.01), respectively. This decline has gradually
stabilized since the year 2000°**° (Fig. 2h). Observed changesinactual
discharge are linked not only to a warmer and drier climate, but also
to increased human water consumption and changes in vegetation
cover®*_ Hydrological data from multiple stations along the river
indicate that downstream discharge is lower than upstream discharge
owing to human water use”*.,

Vegetation restoration alters runoffby direct water consumption
and through vegetation-climate feedbacks. Since the 1980s, the Yellow
River has undergone extensive vegetation restoration’*’?, and it has
longbeen believed thatincreased vegetation cover reduces runoff, alters
the distribution of precipitation and increases evapotranspiration’.
However, the importance of feedbacks between vegetation and the
atmosphere is being increasingly recognized. Observational data and
numerical simulations reveal thatincreased vegetation cover intensifies
land-atmosphere interactions, thereby enhancing thelocal water cycle
and increasing precipitation’”. Long-term observations (1980-2020)
exhibit robust increasing trends (2.76 mm yr) of surface water yield
over 82.3% of the Loess Plateau since revegetation commenced®. This
seemingly counterintuitive trend highlights theimportance of consider-
ing vegetation-climate feedbacksin assessing hydrological responses
to large-scale vegetation changes and restoration efforts.

Changing sediment load and deposition

The Yellow River has historically been characterized by an extremely
high sediment load>"". This section outlines the temporal and spa-
tial patterns in sediment loads and the effects of efforts to reduce the
sediment load.

Temporal trends
The Yellow River used to have one of the largest sediment loads in the
world® (Supplementary Fig. 3). Before 1000 A.D."'*’%”7, sediment load

in the Yellow River was at a level of approximately 0.2 Gt yr™* (Fig. 3a)
but then began to gradually increase owing to increasing soil erosion
caused by cultivation and land use change on the Loess Plateau. Inthe
1950s, sediment concentrationsin the Yellow River surpassed 40 kg m™
(refs.78,79) (Fig. 3b) with an average annual sediment load of 1.6 Gt yr™.
The sediment load peaked in 1958 at 2.1 Gt, far exceeding the natural
baseline conditions'>"*""*°, The average sediment load of the Yellow
River during 1961-1990 was 0.883 Gt yr™, accounting for 5-10% of
global sediment flux into the oceans>*""%,

Theonce characteristically high sedimentload of the Yellow River
has diminished substantially owing to anthropogenic changes, includ-
ing vegetation restoration, landscape engineering and the construc-
tion of reservoirs and check dams'. The sediment load of the Yellow
River declined at an average rate of —0.024 Gt yr during the second
half of the twentieth century. The average annual sediment load after
2000 is 0.148 Gt, only 10% of that observed in the 1950s. In addition,
the sediment concentration decreased by 75% after 2000 (Fig. 3a,b).

Spatial heterogeneity

Large quantities of sediment are transported from the Loess Plateau
into the Yellow River'®"”, which accumulate mostly in the lower reaches
of the river and its estuary. Although over 60% of the Yellow River’s
water discharge originates from the YRB above Lanzhou®’, the sedi-
mentload at Lanzhouis merely 8% of that from the lower reach (Fig. 3c).
The Loess Plateau in the middle reach contributes 90% of the sedi-
ment load entering the Yellow River'®’**#* In the lower reach of the
Yellow River, the channel gradient decreases, leading to substantial
sediment deposition®. Therefore, levees have been constructedin the
lower reaches to control floods". This intense sediment deposition has
elevated the riverbed by over 10 m above the adjacent alluvial plain'®®®,
forming what is commonly known as a ‘hanging river’ constrained
within levees'® (Supplementary Fig. 1). This phenomenon has led to
frequent flooding, breaching and diversion events on the downstream
Yellow River floodplain’®*"*%%,_Moreover, the river channel contin-
ues to meander and silt up between the levees, with breaching of the
elevated river further threatening the floodplain within, and outside,
thelevees® ™,

Sediment deposition in the lower reaches of the Yellow River has
also led to the formation of alluvial plains and deltas. The modern
Yellow River Delta, which began forming in 1855 following diversion
of the Yellow River to its current estuary, has created approximately
2.7 x103km2 of new land®>. During the last 6,000 years, sediment depo-
sition has pushed the coastline 60 kminto the Bohai Sea®”. Itis also esti-
mated that over 530 Gt of sediment have been deposited in the alluvial
plains and deltas since 1128 A.D.””. This deltaic expansion has created
land resources and formed ecologically valuable wetlands with high
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Fig.3|Spatial and temporal patterns of sediment transport. a, A time series
of sediment load in the lower reaches of the Yellow River throughout history
(yellow solid line highlights the trends; the data are fromrefs. 5,77) and from
the 1950s to the present day (the solid line and shaded region indicate the linear
regression and 95% confidence interval, respectively, with the solid line (right)
indicating the periodic mean of the sediment load) in the context of key events.
b, Abox and whisker plot of changes in sediment concentration in the lower
reaches of the Yellow River (centre line, the top and bottom of the box and
whisker extentindicate the average value, 75% and 25% quantiles and maximum
and minimum value in each period, respectively). ¢, Variation and spatial pattern
inwater (left side of inset plots) and sediment discharge (right side of inset
plots) across the source (I), upper (11, I11), middle (IV, V) and lower reaches (VI)

ofthe Yellow River Basin (YRB). d, Temporal response of the bankfull discharge,
(blue bars, the dataare derived from ref. 98 and the Yellow River Conservancy
Commission), delta area (yellow dots, the data are from refs. 95,103,104,209,210)
and channel migration rate (blue dots) of the lower Yellow River in response to
temporal variations in sediment flux (colour bar (top), the data are from ref. 89).
The blue and yellow solid lines and shaded areas show the regression line of

the generalized linear model and the 95% confidence interval for the channel
migration rate and delta area variation, respectively. The data are sourced from
the Yellow River Conservancy Commission (Supplementary Table 1) unless
otherwise stated. The once-heightened sediment load of the Yellow River has
decreased spatially and temporally, leading to changes in the downstream
channel and delta.

biodiversity, various wildlife habitats and important over-wintering
and breedingsites for migrating birds’**. However, the stability of the
Yellow River Delta is heavily influenced by changes in the dynamics of
the sedimentload™.

Responses to decreased sediment

Decreased sediment flux, as well as active reservoir regulation, have
mitigated the problem of sediment depositionin the lower reaches of
the Yellow River. Upstream regulation, including landscape engineer-
ing, ecological restorationand reservoir operationin the late twentieth
century®**, led to a continuous decrease in the sedimentload, reducing
the deposition rate in the lower reaches®. In 2000, the sediment load
entering the lower reaches of the Yellow River dropped below 0.1 Gt yr?,
leading to a transition from a state of deposition to net erosion®. Fur-
thermore, the Water-Sediment Regulation Scheme implemented after
2002 has accelerated the incision and widening of the channel®*®°,
Consequently, the elevation of the riverbed has decreased by up to
3 m(refs.96,97), the bankfull discharge (the maximum discharge that
can be held within the channel) of the lower Yellow River increased by
200% (ref. 98), and the river channel has stabilized® (Fig. 3d and Sup-
plementary Fig. 4). These changes have benefited flood controlin the
lower reaches of the Yellow River, enabling further agricultural develop-
ment on the floodplain®’. Whether this reduced sediment load can be
sustained remains a critical challenge for communities within the YRB.

Nevertheless, the evolution of reservoirs and the riverbed in the
lower reaches has posed challenges to the sustainability of strategies
for the mitigation of sediment deposition and flooding. For example,
the Sanmenxia and Xiaolangdi reservoirs, which were built to con-
trol water and sediment flux in the lower reaches of the Yellow River
in 1961 and 1999, respectively, have undergone severe siltation®>'%°.
Consequently, their storage capacity and the flushing efficiency in
the lower reaches have reduced®®**'*!, In addition, channel erosion
downstream of the dams has led to riverbed incision and coarsening of
the bed sediment, because fine sediment is preferentially entrainedin
water flow’”'°°, This bed coarsening makes the riverbed more difficult
to erode”. Furthermore, a coarsened riverbed leads to the formation
of larger sand dunes in the channel, which increases flow drag. Such
extradraghasbeen proposed to exacerbate therisk of flooding during
moderate and large floods’”'%,

Reductionsinsedimentationalso have negativeimpacts onthe Yel-
low River Delta, with delta expansion slowing since the 1990s7%%>10310¢
(Fig. 3d and Supplementary Fig. 4). Despite delta growth continuing
near the estuary, coastal erosion has occurred further away from the
estuary’”'®®, leading to concerns over potential ecological degradation
resulting from deltashrinkage’*'°*1%, Inaddition, the deltais vulnerable

to the effects of climate change such as sea level rise'°®; therefore,
approaches to sediment regulation in the YRB must balance the need
for flood protectioninthe lower reaches with the sustainability of the
delta.

Anthropogenic changes

Population growth, urbanization and human activities have shaped
the socio-ecological landscape of the YRB since the 1950s. This section
explores the complex human dimensions driving changes within the
YRB, including demographic shifts, patterns of water use, land use
transformations and socioeconomic developments.

Changing population distribution

Population expansion and increased demands for food and energy
have intensified water stresses in the YRB. The human population in
the YRB rose from 10 million in the seventh century to 100 millionin
1950, 146 million in1980 and 216 millionin 2020 (Fig. 4a, Supplemen-
tary Table 1). Urbanization and population aging have led to shifts in
lifestyle, consumption and production patterns, altering water use in
various sectors and producing other environmental impacts'” (Fig. 4b).
Rapid industrialization and urbanization correlate with population
increase over the same periods'®® (Fig. 4a). Despite the continuous
populationgrowth from 1980 t0 2020, the per capita water withdrawal
inthe middle and lower reaches of the YRB declined from 396 m3yrin
1980t0310 m3 yr™in 2020, partly owing to stricter water resource man-
agement and transformations in production patterns. These changes
highlight a pronounced spatial mismatch between water resource
endowments and population distributions (Fig. 4). Moreover, water
scarcity is further intensified by the prevalent migration of people
towards economically developed downstreamregions that are already
experiencing water stress'* ',

Changes in water use

Water use in the YRB faces substantial pressures related to popula-
tion growth, urbanization and economic activities. Water demand
has increased by 15.8% since the 1980s (Fig. 4¢). Between 1980 and
1997, water use increased at a rate of 1.02 km?® yr2, mainly for irriga-
tion, leading to a 63.7% (ref. 112, during 1982-2014) decrease in the
discharge of the Yellow River> ', Industrial water use, the second
largest sector, increased by 17.43% between 1980 and 2020. However,
therate of increase of industrial water use began to decline after 2000,
changing from 0.28 km® yr2before 1997 to —0.02 km? yr 2 after 2000.
Domestic water use, corresponding to water withdrawal for urban
and rural household use and service activities, increased steadily ata
rate of 0.17 km? yr from 1980 to 2020, owing to population growth,
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Fig. 4 | Population and human water use. a, Changes in the rural, urban

and total populationin the Yellow River Basin (YRB) (the data are from City
Statistical Yearbook and the National Census of China) (Supplementary Table1).
b, The distribution of the YRB populationin 1980 and 2020 (the data are from
City Statistical Yearbook and the National Census of China) (Supplementary
Table1). ¢, The contribution of agricultural, industrial, domestic and ecology
sectors to human water use in the YRB (the data are from Provincial Water
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Resource Bulletins (2000-2020); Nation Long-term Water Use Dataset of China
(1965-2013)*" (Supplementary Table 1). d, Spatial distribution of per capita water
withdrawalin the YRBin 1980 and 2020 (the data are calculated from human
water use data and population data) (Supplementary Table 1). The changes in the
population of the YRB and economicimportance of each industry between 1980
and 2020 have driven changes in water use across multiple sectors.

especiallyinurban areas. Consequently, the contribution of domestic
water use to total water use increased from 6.5% in 1980 to 14.3% in
2020. Ecological water use, referring to the water used to maintain
ecosystems (including sediment flushing, planting trees and grass,
rechargingrivers and restoring dried-up regions), has expanded rapidly
since the 2000s (0.31km? yr2), owing to efforts to introduce policies
to support sustainability of the river ecosystem™®,

Although water management practices have decreased per
capita water withdrawal since the 1980s, there is still a substantial
disparity between water availability and demand. Severe drying-up
oftheriver occurred during1980s-2000s; consequently, approaches
such as the Water Allocation Scheme (1998)"” and the construc-
tion of the Xiaolangdi Reservoir in 1999, were proposed to mitigate
water scarcity>"'®"°, These approaches led to a downward trend in
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water use (-0.715 km® yr2) before 2000. This trend stabilized after 2004
(-0.02km?®yr), being balanced by high human demand. The structure
of water use has changed concurrently in response to these economic
and social demand shifts. For example, the contribution of agricultural
water use decreased from 81.44% to 63.75% between 1980 and 2020 but
remains much higher than other sectors (Fig. 4c and Supplementary
Fig.5). Despite these measures, human water withdrawal still reached
84% of the available surface water resources in 2020, breaching the
40% water scarcity threshold'”. Per capita water availability was still
only 473 m3 yr (ref.121) until 2020, representing ~23% of the national
average in China, and falling well below the global threshold for severe
water scarcity (500 m3 yr™) (Fig. 4d).

Land use and vegetation changes
Cultivation, over-grazing and human interventions have caused
ecological degradation in the YRB. This degradation started in the

a Anthropogenic land use exceeding 50%

— Yellow River
[] The YRB
[[] Extent of the Loess Plateau
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C Land use change (1990-2020)

Others
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Fig.5|Land use, vegetation and economic changes. a, Spatial distribution of
the years when the proportion of anthropogenic land use exceeded 50% in the
Yellow River Basin (YRB) (the dataare from HYDE 3.3 (ref. 212)). b, Trend in leaf
areaindex (LAI) between 1982 and 2020 (data from GIMMS LAI4g?"). ¢, A chord
diagram of land use change in the YRB between 1990 and 2020 (the data are from
CLCD**, the thickness of the chords represents the area of land use change with

eleventh century, accelerated in the eighteenth century!$4%70122

and persisted until the 1990s'*'?*, By 1850, anthropogenic land use
exceeded natural land coverin43% of the Loess Plateau (Fig. 5a). From
1950 t0 1960, the extent of cropland on the Loess Plateau increased
by 5 x 10°ha, further reducing natural vegetation coverage’>'*. In the
sourceregion, grassland shrinkage, degradation, and desertification
have been continuous since the 1970s'%'%; consequently, vegetation
cover decreased in 67% of the source region between 1982 and 2001'*°,
This severe degradation could lead toincreased soil erosion, increased
sediment flux into the Yellow River and, consequently, intensified
channel diversion'”.

Inthe frozenregions of the YRB, anthropogenic warming will alter
sediment flux and vegetation growth. Enhanced melting of permafrost
areas in the source regions of the Yellow River on the Tibetan Plateau
has increased sediment flux and channel mobility'”’. Conversely, the
effect of increasing temperatures in warmer areas with seasonally
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the chord colour representing the new land use). d, The total gross value added
(GVA) (solid line) and contribution of agriculture, industry and service to the
GVA (coloured bars) in the YRB (1980-2020) (the data are from City Statistical
Yearbook and the National Census of China) (Supplementary Table1). Since
the 1980s, the YRB has experienced rapid economic growth and ecological
restoration efforts have increased vegetation coverage. CNY, Chinese Yuan.
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frozen ground is modulated by enhanced vegetation growth, which
stabilizes river banks and reduces channel migration'”’.

Various landscape engineering approaches have been imple-
mented to control soil erosion and reduce sediment fluxinto the Yellow
River. The construction of check dams, which intercept sediment on
hillsides orin valleys, was promoted and implemented in the 1950s; by
2011, there were over 58,000 check dams in the YRB**'*°, Moreover,
terrace farming was promoted in the middle reaches of the Yellow
River'®’*"°with the extent of terraces reaching 6.46 x 10*km?by 2022
(ref.131). These measures reduced sediment flux into the Yellow River
inaddition to ensuring that agricultural productivity was maintained
to sustain a growing population’>'**2, However, there is a limit on
the ability of landscape engineering to reduce sediment yield'*'?. For
instance, checkdams cansilt up andlose their retention capacity within
10 years owing to high sediment production',

Various ecological and conservation projects have been imple-
mented in the YRB, leading to increased vegetation coverage, which
mitigates soil erosion. Such projects beganin the 1980s and emerged
rapidly throughout the late twentieth century, including the Three
North Shelterbelt Forest Program (1978)%'***3, which promoted affor-
estation, the Natural Forest Protection Program (1998)%'2>13*13 which
aimed to prevent deforestation, and the Grain for Green Program
(1999)%12>13313¢ ‘'which supported the conversion of cropland to for-
est or grassland. These projects have enhanced forest and grassland
vegetation substantially in the YRB*'**"*'¥ (Fig. 5b,c). Between 1982
and 2020, 71% of the YRB experienced a significant (P < 0.05) increase
inleafareaindex (Fig. 5b).Inaddition, the area of grassland and forest
increased by 4.29 x10° km? (1.0%) and 1.69 x 10* km? (22.8%), respec-
tively, between 1990 and 2020 (Fig. 5¢), and the fractional vegetation
coverincreased by 17% between the years1999 and 20185, The normal-
ized difference vegetation index increased in over 60% of the area in
the source region during the 2000s, as barren land was converted to
grassland™*"*°. In addition, in the Loess Plateau, vegetation coverage
increased from 31.6% in 1999 to 59.6% in 2013, reaching 65% in 2021
owingto the conversion of cropland to grasslands and forests!1¢1417143
(Supplementary Fig. 2).

Economics and policies

Since 1980, the YRB has experienced rapid economic growth, placing
increasing demands onwater resources. The gross value added (GVA)
ofthe YRBincreased by an average of 1.78% per year between 1980 and
2020 (Fig. 5d). In this period, the contribution of agriculture to the
total GVAinthe YRB decreased from 24.5% to 7.5%, the share of service
GVArose from27.6%to 51.4%, and theindustrial share decreased from
47.9% to 41.3% (Fig. 5d and Supplementary Fig. 5). Along with these
changes, the efficiency of industrial water use increased"**'*, high
water-consuming and energy-consuming industries were replaced'*®,
andinfrastructure was enhanced to promote water-saving technology
and establish standard water quotas across sectors'"’.

As water resources become the primary factor restricting eco-
nomic growth, water-related policies have been proposed to governthe
YRB. Before the1980s, initiatives concentrated primarily on the use of
large-scale engineering projects, such as reservoirs and levees, to meet
theincreasing demands for agricultural, industrialand domestic water
andto control floods. For example, the Sanmenxia and Liujiaxia Dams
were constructed to control floods and generate hydropower. Since
1980, the focus has shifted to comprehensive institutional governance”
(Supplementary Fig. 6). For instance, the Water Allocation Scheme
(1987)"*® was the first unified plan to allocate Yellow River water across

provinces, laying the foundation for coordinated basin management.
Althoughthe goal of halting growthin water usage was not achievedin
the first decade, the withdrawal of water was strictly regulated as the
administrative authority of the Yellow River Conservancy Commission
expanded. In2010, the Yellow River Conservancy Commission won the
Lee Kuan Yew Water Prize'* for its complex management system”?,
which prevented the Yellow River from drying up. The construction
of the Xiaolangdi Reservoir in 1999 strengthened integrated water
management through its multifunction purpose of flood control, water
and sediment regulation and maintaining ecological basic flows'*>"%",

After the peakin water usein1997, enhanced water quotapolicies,
including the Water Allocation Scheme (1998)", were introduced to
further strengthen unified water management from the supply side.
Policies to transfer water rights and reform agricultural water prices
were also implemented from the demand side"*'* (Supplementary
Fig. 6). Theaim was to give agrarian water rights to the industrial sector
in exchange for fees to develop water infrastructure™*. From the 2010s
tothe2020s, several technique-guided policies, such asIntegrated Fer-
tilizers and Water Use Management in Agriculture’, were released to
promote water-saving irrigation technologies (Supplementary Fig. 6).
With additional further infrastructure and policies, such as Water
Diversion from South to North™®, Strict Water Management' and the
Yellow River Protection Law (2022)"*%, efficient use of water resources
hasbecomea performanceindicator forlocal administrative officials.

Interplay of human and hydrological systems
Anthropogenic impacts have reshaped the hydrological dynamics
of the YRB and, over time, led to further feedbacks for society. Popu-
lation growth and agricultural expansion have affected the YRB for
thousands of years, resulting in the removal of vegetation, severe soil
erosion, and increased sediment loads". Since the 1960s, anthropo-
genic activities have intensified owing to a growing population and
food demands. Modernization and industrialization have stimulated
engineering projects, such as reservoir construction, which alter water
flow and sediment transport. Meanwhile, ecological restoration pro-
jects have altered vegetation patterns and reduced water and sedi-
mentloads. This section examines the feedback mechanisms between
anthropogenic interventions and hydrological changes, identifying
four hypothetical feedback loops (Fig. 6) and suggesting potential
future changes. Detailed institutional and engineering solutions, plans
and future potential changes are given in Supplementary Fig. 6 and
Supplementary Table 3.

Feedbackloops

Challenges have emerged from the ongoing intertwined interactions
between humans and water, with uncertainties arising from institu-
tional, social and technical transitions and climatic changes™’ . Over
different periods, the strength and influence of these drivers have var-
ied substantially, leading to complex feedback loops that govern the
interactions between human activities and the natural environment.
These shifts have caused ecological and hydrological transformations,
which have often reinforced each other and complicated efforts to bal-
anceenvironmental protection witheconomic and social development
inthe YRB.

The supply expansion feedback loop during1960-1980 was char-
acterised by expanding water supply programmes to meet social and
economic development demands, which reduced water discharge"
(Fig. 6a). Rapid socioeconomic development (for example, the GVA)
in this arid and semi-arid region relies heavily on water resources'®.
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Fig. 6 | Feedback loops for anthropogenicimpacts on the Yellow River.

a, Supply expansion loop (1960s-1980s), characterized by the growth of water
supply programmes to meet the demands of social and economic development.
The coloured boxes indicate dominant loops. b, A resource restriction loop
(1980s-2000s) involving strategies to restrict water demand and the initial
implementation of ecological restoration projects. ¢, A complex governance
loop (2000s-2020 s) in which institutional and engineering solutions increased
water use efficiency, enhanced vegetation and reduced sediment yield.

d, Afutureresilience loop characterized by uncertainties from climate change
and socioeconomic development. The four hypothetical feedback loops
represent dynamic interactions between human and water system components
across different periods.

Therefore, engineering infrastructure, such as diversion projects,
were developed to boost water supply. This water supply supported
further economic activities, creating an accelerating feedback loop.
Theincreasing demand, driven by engineering-intensive development,
led to the appropriation of water resources from external regions and
other stakeholders within the basin'®*'**, The lack of adequate policies
and institutional constraints led to further scrambles for water alloca-
tion and drying-up crises for streamflow'®’. Moreover, urbanization
and land development restrict vegetation cover, further impacting
discharge and sediment flux'*'**,

Between 1980 and 2000, water scarcity became a key driver of
institutional shifts in the YRB leading to strategies to restrict water
demand®. Population growth, economic development and urbani-
zation continued to drive demand (for example, food and energy).
Therefore, water scarcity curbed uncontrolled exploitation through
institutional reforms and monetary policies. However, mismatched
institutional structures, under which the provinces engage in unco-
ordinated competition for scarce water owing to economic growth
pressures, led to intensified exploitation of water resources, fuelling
disputes over the fairness of governance outcomes'*' (Fig. 6b).In the
late 1990s, ecological restoration efforts began to emerge to mitigate
some of the adverse effects (such as, drying up'®, wetland shrinkage’*
and increasing soil salinization'*®) of past practices'’.

A complex governance loop emerged throughout 2000-2020 in
which water use efficiency increased via demand-side and supply-side
management'® and strategies such as water diversions and ecological
projectswereintroduced to enhance vegetation and reduce sediment
yield'. Increased diversity in policy and governance enhanced water
use efficiency™, reducing overall water consumption (Fig. 6¢). Mean-
while, ecological conservation and restoration efforts began to control
soil erosion more effectively with unified regulation also enhancing the
management of sediment deposition. Large-scale vegetation conser-
vation and landscape engineering projects were also implemented to
control severe soil erosionin the YRB.

However, vegetation restoration projects also altered hydrologi-
cal processes (Fig. 6¢). For example, the rapid increase in vegetation
has increased evapotranspiration, reduced runoff and discharge,
and caused soil moisture depletion**>"°, By 2021, vegetation in the
eroded sediment areas of the middle reaches of the Yellow River had
nearly recoveredtoits ecological threshold level (65%)'*>. Downstream
water discharge dropped by 38% from 1971-1990 to 1991-2016, with
vegetation increase responsible for up to 26% of this decline'**"",
The depletion of soil moisture and terrestrial water storage has raised
concerns about hydrological sustainability in the YRB. In 2008, the
maximum depth of the dried soil layer reached 5 m, primarily in the
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forest regions®*°°7>'” This depletion limits the future effects of eco-
logical restoration and threatens water resource availability in the
middle and lower reaches of the Yellow River™7*'”>, Therefore, instead
of extensive afforestation, mixtures of trees, shrubs and herbaceous
plants adapted to local conditions should be prioritized to balance
hydrological sustainability and ecological effectiveness®. It is also
possible that increased vegetation could enhance local water cycles
and increase precipitation; however, the degree and importance of
this feedback are uncertain®”*",

Future changes

Climate change is expected to alter future water availability (Fig. 6d).
Engineering and institutional approaches to address soil erosion and
excessive water withdrawals have curbed the overall deterioration
in water resources. However, dependence on more extensive human
interventions has resulted in a legacy of maximizing water resource
utilization”. Theincreasing frequency and severity of extreme events
under the impacts of climate change might diminish the stability of
water supply and challenge this water management system, which was
optimized under previous human-river relationships. Glacial melting'”®
will also lead to the loss of stored water. Future water resources in the
YRB are projected to increase by 0.218 + 0.201 km?® yr under various
climate change scenarios and models (Supplementary Fig. 6). These
perceived improvements in water availability could lead to increased
dependence on external factors, such as increasing precipitation.
Underestimating the risks associated with water crises could weaken
the motivation for proactive management and policy interventions
intheshort term. Given thatinstitutional reforms often exhibitinher-
ent delays, there might be further water depletionin the long term'”,
increasing the vulnerability of the system.

The compound impacts of reduced cropland area, population
decrease® and improvements in the efficiency of water use are pro-
jected to mitigate human water demand in the late twenty-first century
(Fig. 6d). Models incorporating fertility policies, well-being and eco-
nomic growth project that the population of the YRB will peak around
2020-2030 (Supplementary Fig. 6). However, an ageing population
might lead to more uncertainbehaviours in water use (Supplementary
Fig.5). Ongoing demographic change, production shifts and climate
change are likely to cause a decline in cropland area until the 2100s,
leading to reduced agricultural water demand. In addition, socio-
economic and technological transitions have led to improvements
in the efficiency of water use. Human water demand, modelled by
integrating complex system transitions — including future population
changes, land use changes, economic cycle fluctuations'”’, technologi-
cal changes and shifts in human lifestyle'®® — will potentially reach a
peak of 74 km?3 yrin the mid-twenty-first century, still exceeding the
2020 level of 67 km3 yr.

Other projected changes, such as urbanization, forest and grass-
land expansion and increased ecological water use, could increase
water demand for humans and the broader ecosystem. Urbanization
is expected to continue to increase and is projected to reach 75-90%
by the 2100s (Supplementary Fig. 6), accelerating the increase in
domestic, food and industrial water use. The expansion of forests
and grasslands remains possible under different scenarios, driven by
ongoing ecological restoration efforts and climate change (Supple-
mentary Fig. 6). This potential increase in vegetation could pose risks
todomestic, industrial, and irrigated water availability. Moreover, the
share of ecological water use (for example, to supplement wetland,
groundwater and urban greenspace) is predicted to grow and compete

with human water use for social and economic activities”and threaten
food production™', High water stressin the YRB will persist unless there
is ashiftin the demand'***®',

Complex anthropogenic-hydrological feedbacks must be con-
sidered when negotiating the conflict between human demands and
water. Approaches such aslandscape engineering, reservoir operation
and ecological restoration have been used to address the problem of
sedimentation in the YRB'. However, inertia in resource allocation
might resultin diminishing marginal returns and a reduced ability to
respond to emerging risks. Challenges such as reaching engineering
saturation, soil moisture depletion and limitations on water resources
canseriously compromise the efficiency of these sediment reduction
strategies™'**'”*, Therefore, it is important to design feedback loops
to be more adaptive when facing such uncertain and complex risks.

Summary and future perspectives

Despite being historically the world’s most sediment-laden major river,
the YRBis now experiencing asimultaneous decline in water discharge,
soil moisture and groundwater alongside rising human water consump-
tionand evapotranspiration. Consequently, the overall flux of the water
cycleis intensifying, whereas water resource storage is diminishing.
Since the mid-twentieth century, large-scale engineering works and
policy reforms have reduced sedimentloads. Compounded by drivers
such asland use transformation, escalating urbanization, and evolving
water usage patterns, these projects have also altered eco-hydrological
processes. The complexinterplay of hydrological change, humaninter-
vention and institutional policies in the YRB exemplifies a new, mul-
tifaceted erain arid river basin management: this erais characterized
by short-termwater supply successes but heightened long-termrisks,
suchasgroundwater depletion and mounting agricultural dependence
onirrigation. These risks foreshadow a potential water crisis that, when
combined with future climate pressures, underscores the need for
transformative and adaptive water governance in the YRB.

Several unresolved challenges remain for the YRB that require
further hydrological research, and are issues shared by major river
basins globally. First, the complexities surrounding how vegetation
restoration regulates river systems, especially its feedback with pre-
cipitation, remain poorly understood but could haveimportantimpli-
cations for arid rivers undergoing restoration or deforestation, such
as the Tarim'”®, Congo watershed'®* and Amazon rivers’**'**, Second,
managing the delicate balance between controlling soil erosion and
safeguarding increasingly urbanized delta ecosystems introduces
scientificand policy dilemmas, as seen in major deltas'®, such as those
ofthe Mekong'®®, Rhine'® and Yangtze'** rivers. Third, the unintended
consequences of water management policies'’ —such as shifting stress
from surface to groundwater resources — raise questions concerning
the sustainability of interventions across transboundary rivers'’,
including the Colorado, Murray and Orange rivers'°. Thus, further
research on the YRB is important for investigating globally relevant
eco-hydrological challenges and developing innovative, transferable
solutions.

Comprehensive monitoring is needed to better understand
arid-region river systems such as the YRB**"', Monitoring in the YRB
focuses primarily on flux measurements, such as water and sediment
discharge, and evapotranspiration for water resource management.
There is a shortage of dynamic monitoring data of water storage in
groundwater, soil moisture and glaciers. Measurements of these water
storage components rely on coarse estimations using large-scale mod-
els or remote sensing methods. The long-term decline in water storage
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acrossthe YRB could lead to water resource crises that might be over-
looked by traditional monitoring flux metrics'**'>. Thus, comprehen-
sive monitoring networks are needed to capture dynamic variables
of the water cycle, develop a digital twin of the river system based on
real-world data and consider the economic and technical feasibility
of different policies and forecasts'*. Such monitoring and simulation
technologies have been widely used in water resource management
inurban areas to improve water use efficiency. However, data are still
lacking in sparsely populated, underdeveloped regions. Addressing
these datalimitations will enableintegrated modelling of human-water
systems and water management within the river basin'”.

Adaptive capacity in regional water management practices is
necessary to bridge the gap between science and policy, facilitat-
ing responses to immediate challenges and long-term uncertainties
in a changing climate and socioeconomic context. The unexpected
outcomes of water management policies, such as the water quota
policy®, reveal the complexity of river basins. Theoretical and practi-
cal gaps in the pliability of scientific research and policy-making can
lead tolong-termlegacy effects, despite achieving successinaddress-
ing immediate challenges. The lag between intervention and impact
can span decades, resulting in inequality in access to water resources
among various stakeholders across different periods and regions?.
Efforts to enhance adaptive capacity must balance the competing
objectives of economic development, ecological preservation and
social equity’. For instance, future work should aim to explore the
carrying capacity of water resources; reducing human interference;
prioritizing nature-based solutions; the benefits of adaptive policies
such aswater rights trade, adapting forestry, shrubs and grassland to
environmental conditions; and reforming rigid institutions"'*°,

It is essential that scientific knowledge from different regions
and cooperation across areas is used to achieve adaptive water
governance'’, Therefore, sustained investment in interdisciplinary
collaborative platforms, including funding, the development of
young scientists, international partnership networks, and standard-
ized assessment indicators is needed to integrate the strengths of all
parties and bridge the knowledge gap in sustainable river management.

Data availability
Supplementary Table1outlines details of the datasets used in Figs. 1-4.
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