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Abstract

Collective memory plays a controlling role in adaptation to potential flood

risks, by learning from past disasters. However, with little quantitative empiri-

cal data, previous socio-hydrological models have conceptualized the decaying

process of flood memory in an oversimple approach. Here, based on survey

data of 683 respondents on Ningxia Floodplain, we confirmed that flood mem-

ory decays overtime via two channels: oral communication (communicative

memory) and physical recording of information (cultural memory). Using the

Universal Decay Model (UDM) proposed by previous researchers provides bet-

ter fitting of results to the decay of flooding memory (adjusted R2 coefficient

are 0.97, 0.90, 0.95 when data of all, rural or urban respondents used, respec-

tively) compared with the original exponential model (adjusted R2 coefficient

are 0.91, 0.74, 0.59, corresponding). Then, significantly reduced losses for the

same flood sequence predicted by integrating the UDM into a socio-

hydrological model by 16% and the differences between different clusters

(urban and rural respondents) can even reach 22.81%. These differences sug-

gest that previous socio-hydrological models have been too simplistic in their

conceptualizations of decaying processes associated with collective memory,

which may have limited deeper insights into flood risk management.
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1 | INTRODUCTION

Collective memory (or social memory), a concept rep-
resenting the collective perception of events and shared

experiences (Assmann & Czaplicka, 1995), may deter-
mine the capacity of communities to maintain awareness
of specific risks (Viglione et al., 2014). One of the signifi-
cant consequences of future climate change is a predicted
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increased incidence of flood hazards (Arnell &
Gosling, 2016; Jaramillo & Destouni, 2015; Winsemius
et al., 2016). In the face of increasing flood risks on the
world's largest rivers and their floodplains, collective
memory plays a controlling role on how society keeps
awareness of flood risk, by learning from past disasters
(Best, 2019; Blöschl et al., 2017; Fanta, Šálek, &
Sklenicka, 2019).

Based on rich observations, previous studies had
embedded collective memory in socio-hydrological
models of the interplay between human and floods
(Di Baldassarre et al., 2015; Viglione et al., 2014). With
little quantitative empirical data, previous simulations
suggest that adaptation to flooding can effectively
increase resilience and reduce losses as collective mem-
ory accumulates (Ciullo, 2017; Di Baldassarre et al., 2017,
2015). However, these heuristic models use to over-
simplified processes of collective memory, where remain
a knowledge gap may limit further insights toward flood
risk management. For instance, similar to the “forget-
ting” curve of individuals, previous models describe a
constant decaying process of flooding memory by a simple
exponential function (Kelley, Neath, & Surprenant, 2015;
Rubin & Wenzel, 1996). However, there is a large body of
literature suggesting that collective memory consists by
more complex processes which combine two distinct chan-
nels (Assmann & Czaplicka, 1995; García-Gavilanes,
Mollgaard, Tsvetkova, & Yasseri, 2017; Rubin, 2014a,
2014b): communicative memory (sustained by oral trans-
mission) and cultural memory (sustained by physical
records including texts and monuments). From this theory,
a Universal Decay Model (UDM) of collective memory
which offers better explanations and predictions, had been
proposed (Candia, Jara-Figueroa, Rodriguez-Sickert, Bar-
abási, & Hidalgo, 2019; Coman, 2019). By distinguishing
two channels (communicative memory and cultural mem-
ory), the UDM assumes they decay independently while
partial lost communicative memory can transform into cul-
tural memory synchronously. Since it is still unclear
whether it is more applicable to the flooding memory
domain than the original exponential model, a logical next
step is to identify collective memory models that can effec-
tively explain socio-flood interplays and inspire flood risk
management.

Based on a survey regarding five well-documented
historical floods in Ningxia Floodplain, China, we test
how flooding memory decays and integrate it into the
socio-hydrological models. Then, by comparing different
simulation results, we explore if any essential difference
raised after reconstructing the society modules with the
UDM. Lastly and more importantly, we give discussions
on how these differences inspire further insights on flood
risk managements.

2 | METHODS

2.1 | Research framework

Assuming flooding memory as an important partial, Di
Baldassarre et al. (2013), Viglione et al. (2014), Di Bal-
dassarre et al. (2015) raised models to capture the co-
evolution of society and flood events. On the base of
them, we proposed a substitution of the society module
by the Universal Decay Model (UDM) of collective mem-
ory (Candia et al., 2019) as it provides a more explicit
explanation of collective memory.

As all modules and their relationships illustrated in
Figure 1, we choose the model by Di Baldassarre
et al. (2015) as a basic version for substitution, where col-
lective memory plays a controlling role. First of all, we
select a typical floodplain (see Section 2.2) to do a survey
regarding memory of major historical floods (see Sec-
tion 2.3). Then, after processing the questionnaires in the
survey, we use the datasets to fit memory decay rate
under different alternatives of the society module (see
Section 2.4). Finally, we do simulations with the socio-
hydrological model (see Section 2.5) to test if any essen-
tial difference can be demonstrated.

2.2 | Study area

The Yellow River (Figure 2a) crosses the Ningxia Plain in
the arid and semi-arid regions of China and is known for
its huge sediment discharge and frequent historical floods
(Wohlfart, Kuenzer, Chen, & Liu, 2016). The Ningxia
Floodplain, a fault basin filled with sediment from the
Yellow River, accounts for a majority (6,600 km2) of the
total area of the Ningxia Plain (Figure 2b). Since precipi-
tation is scarce in this area (180–200 mm/year), irrigation
is vital for agriculture, the dominant economic sector on
the floodplain (Figure 2c). Moreover, floods caused by
highly concentrated precipitation of summer months is a
threat to the autumn grain harvest, the most important
income source for farmers in the study area (Figure 2d,e).

We chose this study area for the following three rea-
sons: (a) First, previous studies have shown that floods of
the floodplain's mainstem and tributaries are essentially
non-contemporaneous (Yuan & Tian, 2016), which
reduces the possibility of respondents' memory confusion.
(b) Because of the isolation of topography, distinguishing
borders shaped the floodplain where kept a low emigra-
tion rate, which make it easier to inquire flooding memory
(Yuan & Tian, 2016). (c) There is a wealth of historical
materials of flooding events here, with recorded floods dat-
ing back to 1904. Taken together, the Ningxia Floodplain
appears to be a region well suited for our survey.
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2.3 | Data collection

To assess collective memory of the historical floods, we
carried out a questionnaire survey (see Table 1) in the
study area, collecting 391 online questionnaires and
338 offline questionnaires. Since the study area involves
four prefecture-level cities: Shizui Shan (SZS), Yin Chuan
(YC), Wu Zhong (WZ), and Zhong Wei (ZW), a stratified
sample approach was applied according to the proportion
of population in different prefectures. After screening,
self-contradictory (e.g., the number of persons in a house-
hold is different from total members in each age group)
and apparently haphazard responses (e.g., claiming to
own a car in their home in 1904) were excluded as inva-
lid data. A pre-processed dataset is open-access on Github
(https://github.com/SongshGeo/Collective-Memory).

Some additional datasets were gathered for simulat-
ing with the socio-hydrological model. (a) High-water
levels of the historical floods were provided by the Yellow
River Conservancy Commission. (d) The demographic
data and levee heights were retrieved from statistical
yearbooks of government agencies (https://oversea.cnki.
net/index/). (c) In order to calculate relative population
density by the method from Di Baldassarre et al. (2017),
the floodplain's maximum carrying capacity of

population are set as 4–5 million by multiplying the num-
ber estimated from Zhao, Wang, and Wang (2008) and
the area of the floodplain.

2.4 | Fitting of memory decay models

In our survey, respondents' memory to five well-
documented major floods were collected. Once admitted
to having memory to a certain historical flood, respon-
dents must recall how they get known about it. Then, we
labelled their answers by “heard of”, “read about” or
“experienced”. Then, we assumed that the “heard of”
label corresponds to communicative memory, the “read
about” label corresponds to cultural memory, and the
“experienced” label corresponds to that who initially
influenced (Figure 3).

After that, we transferred the number of each cata-
logue into proportions. Considering five historical floods
as observations, we applied least-squares fitting to esti-
mate model parameters regarding memory decay rates.
Our main concern was differences between two memory
decaying models: the exponential-based model
(Equation (1)) in the original socio-hydrological model
and the UDM (Equations (2.1)–(2.3)). These alternatives

FIGURE 1 Model framework (adapted from Candia et al. (2019); Di Baldassarre et al. (2015)). The grey boxes are the main modules,

and the white boxes are exogenous processes. The UDM (dashed box) is substituted for theSociety Module. Black arrows indicate that output

from one module directly causes an abrupt change in the target module, and white arrows indicate a gradual, coevolutionary relationship

between the two connected modules. Arrow 1: Floods cause damages. Arrow 2: Flood damage leads to a sudden drop in relative population

density. Arrow 3: Following its response strategies, the society chooses whether to heighten levees after flood damages. Arrow 4: The

collective memory of flood damage accumulates abruptly. Arrow 5: The levee protects the society from floods with water levels lower than

its height. Arrow 6: Greater relative population density means greater flood damage. Arrow 7: The population growth rate decreases in

response to the collective memory of the floods. Arrow 8: In the UDM, collective memory consists of communicative memory and cultural

memory and communicative memory is accumulated before cultural memory
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assume different memory decaying laws: while the expo-
nential model only describes a single process of collective
memory decaying (Figure 3A), the UDM splits collective
memory into communicative memory and cultural mem-
ory, with conversions from the former to the latter
(Figure 3B). Next, memory rates regarding historical
floods are used in fitting the models and the results are
assessed by the adjusted R2. Since it can weaken impacts
from various samples' size and degree of freedoms, the
model with higher adjusted R2 was considered as the
more explanatory. Finally, we split the questionnaire
dataset into different subsets according to household reg-
istration types (rural or urban) and refitted the model by
above methods.

M1 =n� e μs�Δt ð1Þ

M2 =U +V ð2:1Þ

U = n� e− p+ rð Þ�Δt ð2:2Þ

V =
n� r

p+ r−q
� e−q�Δt−e− p+ rð Þ�Δt ð2:3Þ

where M1 and M2 refer collective memory, U and V refers
communicative memory and cultural memory, respec-
tively. Parameter n refers an initial value of memory, Δt
is the time span from the beginning of decay. On the
other hand, μs, p, r, and q are parameters related to decay
rate (see Figure 3).

2.5 | Simulations by socio-hydrological
models

In addition to the society module we focus on, there are
another three main modules and an exogenous driving
process in the socio-hydrological model (see Figure 1).
(1) In the Hydrology Module, the relative flood damage
(F, a proportion of loss ranging from 0 to 1) is a function
of the flood's high-water level (W) and the current levee
height (H). (2) In the Technology Module, the levee is

FIGURE 2 The study area. (A) Map of the Yellow River Basin showing the location of the Ningxia Floodplain. (B) Diagram showing

the geography and tectonic structure of the Ningxia Floodplain, adapted from Chen (2010). (C) Land-use types of the Ningxia Floodplain.

(D), Monthly precipitation in the study area. (E) Crop areas in the study area, 2007–2015
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raised by a factor (R) representing the response strategy
the society takes. (3) In the Demography Module, the
maximum growth rate of the population on the flood-
plain decreases with the accumulation of collective
memory or the occurrence of flood events. (4) The

driving process is Floods Forcing, which is an input as a
time series of high-water levels (W) (Viglione
et al., 2014). Taken together, the following equations
(Di Baldassarre et al., 2015) are used in the model. The
variables and parameters are defined in Tables 2 and
3, respectively.

F =1−ⅇ−W + ξHH−
αH ð3Þ

R=
εT w+ ξH− −H−
� �

Technological societyð Þ
0 Green societyð Þ

(
ð4Þ

ⅆD
ⅆt

= ρD 1−D 1+ αDMð Þð Þ−Δ ψ tð Þð Þ �FD− 5:1ð Þ
ⅆH
ⅆt

=Δ ψ tð Þð ÞR−xTH 5:2ð Þ
ⅆM
ⅆt

=Δ ψ tð Þð ÞFD− −μsM 5:3ð Þ

8>>>>>><
>>>>>>:

Variables are indicated by capital letters, and a
“minus” subscript indicates their current value. Parame-
ters are indicated by Greek letters with subscripts that
designate the module they apply to (i.e., H, F, R, S);

TABLE 1 Key questions in the questionnaire

Basic information:

Home address: __________________________, Household registration type: Rural or Urban? _____

Number of family members: ____, among them: <14___, 15‐24___, 25‐49____, 50‐64____, 60 + _____

Education level: _______, Income: ________ (in a year)

Transportation and communication tools in: 1904_____, 1946_____, 1964____, 1981____, 2012_____.

Question 1: In which way did you learn about the following five floods? Please check the appropriate box (multiple
selections are allowed)

1904 1946 1964 1981 2012

Saw from books or other records □ □ □ □ □

Saw from a flood monument or historical marker □ □ □ □ □

Heard from others □ □ □ □ □

Friends who experienced it personally Impossible □ □ □ □

Do not know about it □ □ □ □ □

Personal experience Impossible □ □ □ □

Question 2: How much do you trust in the reliability of the levees of the Yellow River built by the government?

1(doubt) 2 3 4 5 6 7 8 9 10 (trust)

Question 3: How much do you trust in the accuracy of the flood predictions of the Yellow River by the government?

1(doubt) 2 3 4 5 6 7 8 9 10 (trust)

Question 4: How much do you trust in the ability of the government for emergency responses to floods?

1(doubt) 2 3 4 5 6 7 8 9 10 (trust)

FIGURE 3 Respondent labels and their correspondence to

different model variables. (A) Decay processes of collective memory

according to an exponential model. (B) Decay processes of

communicative memory and cultural memory, with part of

communicative memory transfer into cultural one at the same time
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nonperiodic Dirac delta function (Δ(ψ(t))) is always
0 except when ψ(t) = 0 (i.e., when flooding occurs), in
which case it is 1. The main focus of this study is adapta-
tion without considering the effects of levees, for which
we set R as 0.

Next, we used data from the study area to estimate
parameters. (1) For comparison with previous studies,
the parameters related to levee effects (ξH, κT, and εT)
were considered as zero, representing the hypothesis of
no addition to high-water levels due to changes in levee
height. (2) To estimate parameter αH, we chose the high-
water level of the flood event in 1904 (W = 1,141.5 m,
H = 1,135.3 m, the biggest one ever) and calculated the
percentage of the study area that would be inundated.
According to (Yuan & Tian, 2016), this water level would
affect 952.08 km2 of the study area, which is 14.43% of
the total area (F = 0.1443), i.e., αH ≈ 84.5. (3) Our ques-
tionnaires scored the public's general perception of
flooding risks in three respects (see Section 3.1):

reliability of levees (score = 7.31), flood prediction
(score = 7.35), and emergency response (score = 7.54).
Since the highest score is 10 (corresponding to αD = 1),
we used these three scores as an estimation of the param-
eter for the public's risk awareness (i.e., αD ≈ 0.75).
(4) Since the model of increasing population in the study
area appeared to be consistent with an exponential
growth pattern, we adjusted the Demography Module by:

ⅆD
ⅆt

= D ρD−αDMð Þð Þ−Δ ψ tð Þð Þ �FD− , ð6Þ

in which population growth is based on a Malthusian
model with population growth rate in about 0.03 year−1.
(5) To the parameters related to collective memory decay
(μs in exponential model, p, r, and q in UDM), the fitting
results were used.

After then, we performed simulations under 100-year
flooding sequence of forcing. We firstly compared the

TABLE 2 Variables of the socio-hydrological model

Variable Description Position in the framework Initial value

W High-water level Floods forcing Time series of water levels

F Relative flood damage Hydrology module 0

H Levee height Technology module 0 m

R Raising of levee Technology module 0 m

D Relative population density Demography module 0.1

M Collective memory Society Module and the UDM 0

U Communicative memory UDM 0

V Cultural memory UDM 0

TABLE 3 Parameters of the socio-hydrological model

Parameter Description Unit Module Value

ξH Proportion of additional high-water level relative to
levee height

Hydrology 0

αH Relationship between floodwater levels and relative
damage

L Hydrology 84.5

εT Safety factor for raising levees Technology 0

κT Rate of decay of levees T−1 Technology 0 year−1

ρD Maximum relative population growth rate T−1 Demography 0.03 year−1

αD Ratio of preparedness to awareness Demography 0.75

μs Loss rate of collective memory T−1 Society Fitted

p Decay rate of communicative memory T−1 UDM Fitted

r Conversion rate from communicative to cultural
memory

T−1 UDM Fitted

q Decay rate of cultural memory T−1 UDM Fitted
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UDM-based and the original exponential-based socio-
hydrological model. Then, we further tested them under
different memory decay parameters estimated from the
“all respondents,” “urban respondents,” and “rural
respondents” datasets, respectively. We repeat each test
by simulating 100 times to ensure robustness of results
and differences between them are evaluated by paired-
samples T-test (significant when p < .05).

3 | RESULTS

3.1 | Survey results

There are 606 (88.86%) valid questionnaires after
processing, whose distributions are similar to population
ratio between different prefecture-level cities, compared
with census data (Figure 4a). Furthermore, the propor-
tion of respondents with rural household registration was
43.23%, with average gender ratio (male vs. female) of
family members of 1.00, which are similar with 41.13%
and 1.04 in census data. According to our survey, there
are some differences between urban and rural respon-
dents in channels of retaining flooding memory: only
21.02% flooding memory of rural respondents came from
reading about, while it is 37.13% of urban respondents
(Figure 4b). For five differ-magnitude historical floods,
respondents' flooding memory mainly came from “hear-
ing of,” while the number of respondents who had
known of each historical flooding by “reading about” is
rather similar (Figure 4b). However, after proportional

scaling them by water levels, a clear trend shows that
more respondents can memorize a more recent flood
(Figure 4c). Finally, according to our survey of risk cogni-
tions, there are few differences between dimensions of
flooding risk awareness: trust to levee (mean score: 7.32),
trust to disaster warnings (mean score: 7.36) and trust to
government (mean score: 7.52) (Figure 4).

3.2 | Decay of collective flooding
memory

The original exponential model and the UDM, based
on different theories, result in different fitting results
of flooding memory decay, respectively. According to
the UDM, collective flooding memory estimated to
have a rapid increment firstly then decreasing gradu-
ally (Figure 5a), consisting of the sum of communica-
tive and cultural memory. On the other hand, the
original exponential model estimates this process as a
keeping decaying curve (Figure 5e), whose adjusted R2

coefficient is 0.91 (Figure 5b), slightly below the UDM
in 0.97 (Figure 5f). However, when fitting by different
datasets catalogued by respondents' registration types,
substantial gaps between two models were further rev-
ealed. For rural and urban respondents, respectively,
the exponential decay model's adjusted R2 decreases to
0.74 and 0.59 (Figure 5g,h). On the other hand, for all
types of dataset, the UDM throughout provides effec-
tive fitting, as the adjusted R2 remained above 0.9
(Figure 5c,d).

FIGURE 4 Main statistical results

of the questionnaire. (A) Proportion of

respondents from different prefecture-

level cities. (B) Proportion of

respondents' flood memory channels

from different household registration

types. (C) Number of respondents with

memory regarding five major historical

floods. (D) Perception scores of flood

risks
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3.3 | Simulation results

After integrating the UDM as the society module of the
socio-hydrological model, accumulations of flooding mem-
ory and simulations of flooding losses all differ from the
original model. According to our results, since an accumu-
lation of flooding memory simulated by the UDM-based
model are faster, flooding losses significantly (p < .01)

reduced over 16% within 100-year flooding sequence
(Figure 6). Furthermore, some significant differences in
the simulations of the socio-hydrological model also occur
when the three different datasets are used to fit memory
decay rates. Comparing with the base-case model whose
parameters estimated by the dataset of all respondents, an
average total flooding loss from the 100-times simulation
within 100-year flooding sequences are (Figure 7A):

FIGURE 6 Losses simulation under a 100-year potential flood sequence. (A) Time series of random flood forcing. (B) Simulation of

collective memory by the UDM as society module. (C) Simulation of collective memory by the exp model as society module. (D) Simulation

of annual flooding loss by socio-hydrological model integrated the UDM. (E) Simulation of annual flooding loss by the original socio-

hydrological model

FIGURE 5 Fitting results by different collective memory decaying models. In the diagram of decay processes predicted by the UDM

(A) and by the exp model (E), we only highlight the trend of flood in 1904 in order not to clutter. Others, Figures B, C and D show the

relationship between the different survey data (all survey data, rural and urban survey data) results of flooding memory retention rate for

each historical flood and of the predicted results by the UDM, while F, G, H correspondingly represent the exp model respectively
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• Increased by 14.54% increased when parameters are
evaluated from the rural dataset and

• Decreased by 8.27% decreased when parameters area
evaluated from the urban dataset.

By way of contrast, these numbers are only 4.69% and
3.42% for the exponential-based model (Figure 7b). In
addition, one of the simulations reveals that collective
memory is accumulating more rapidly when the UDM-
based model using parameters fitted by the urban dataset,
and the flooding losses become progressively lower
(Figure 8). However, when using parameters fitted by the
rural dataset, the change of flooding memory is rather
similar to that simulated by exponential-based ones,
which have much slower processes for memory accumu-
lation (Figure 8).

4 | DISCUSSION

4.1 | Why the UDM makes more sense

Based on rich empirical observations, collective memory,
playing an important role on how societies keep

awareness to flood risks, has been embedded in socio-
hydrological models to capture the interplay between
human and floods (Ciullo, 2017; Di Baldassarre
et al., 2015; Fanta et al., 2019; Viglione et al., 2014).
Though flooding hazard leads to series of adaptative
actions (fight or flight), potential losses increased as the
memory decayed and awareness weakened, where
flooding memory decay rates play a big part
(Ciullo, 2017; Di Baldassarre et al., 2015). Our survey sug-
gests people often forget the once devastating floods,
since flooding memory shows an evident decreasing
trend with time spans (Figure 4c), which is in line with
the finding that “the memory of the flood will not last for
generations” (Fanta et al., 2019).

On the base of flooding memory decaying hypothesis,
studies on individual or collective memory also expand
broad prospects in this realm. Many theories have
depicted a general process of memory decaying, in which
the newest and classic ones both point out that collective
memory may consist of communicative memory
(or living memory) and cultural memory (or distant
memory) (Boyer & Wertsch, 2009; Hirst, Yamashiro, &
Coman, 2018; Rubin, 2014a, 2014b). Again, our results
are in line with this theory, based on following three rea-
sons. (1) Firstly, for five surveyed historical floods, there
is no significant correlation (see Figure 4c, p > .1) in
flooding memory between two channels (communicative
or cultural), which indicates that they may follow in dif-
ferent decaying processes. (2) Secondly, the UDM fit the
flooding memory well (adjusted R2 is 0.97, see Figure 5),
while different memory channels (collective, communica-
tive, or cultural) were all well predicted. (3) Thirdly,
when tested by different subsets of survey data, the fitting
results of UDM kept robust (adjusted R2 is 0.90 and 0.95,
by the rural or urban subsets, respectively). However, an
exponential decaying model failed to capture diversities
between rural and urban clusters, with the adjusted R2 of
fittings decrease rapidly (0.74 by rural dataset and 0.59 by
urban dataset).

The above-mentioned differences may stem from
underlying assumptions of memory decay. The original

FIGURE 8 Flooding memory

simulation (A) and losses simulation

(B) under a 100-year potential flood

sequence (the same sequence as Figure 6),

where different datasets or different

memory-decay models (the UDM or the

exponential model) were used

FIGURE 7 Total flooding losses simulated under a 100-year

potential flood sequence by UDM-based (A) and exponential-based

(B) socio-hydrological model (repeated 100 times of simulation),

with parameters fitted by different dataset of respondents (all

respondents, rural respondents, or urban respondents)

SONG ET AL. 9 of 12



exponential model, also known as the “forgetting” curve,
originally came from a famous psychological experiment
in 1885 that explored the laws of individual memory
(Psychology Wiki, 2020). However, a large body of litera-
ture suggests that collective memory following
completely different laws from individual memory, as
complex propagations and interactions play a role
(Assmann & Czaplicka, 1995; Boyer & Wertsch, 2009;
Candia et al., 2019). For example, cases show that collec-
tive memory contains a high level of attentions at the ini-
tial phase—often referred to as “opinion fermentation”—
followed by a gradual but long-lasting period of forgetting
(Candia et al., 2018; García-Gavilanes et al., 2017;
Licata & Mercy, 2015). Again, our fitting results suggest
the laws can be explained by the UDM, while the expo-
nential model is rather a description of individuals' mem-
ory decay. For instance, differences between rural and
urban subsets may reflect a fact that there are discrepan-
cies in their flooding memory channels. While rural
dwellers are influenced by communicative memory a lot,
flooding memory is more accessible through cultural
channels for urban dwellers (see Figure 4b). Since previ-
ous studies have pointed out that cultural memories often
decay more slowly (Candia et al., 2018), urban respon-
dents were able to accumulate flood memories faster (see
Figure 8).

Taken together, our results suggest that while socio-
hydrology has recognized the controlling role of collec-
tive flooding memory, an overly simplistic understanding
of its decay may conceal some important features of this
process.

4.2 | How can the UDM inspire insights
of flood risk management

For following three reasons, we believe that the integra-
tion of UDM into the socio-hydrological model provides
new insights into flood risk management.

Firstly, the improvement of the society module by the
UDM contributes to further development of the related
socio-hydrological models. Previous studies based on the
original model have shown that it is paramount for flood-
plain societies to avoid potential flood risks by retaining
flood memory (Ciullo, 2017; Di Baldassarre et al., 2015).
Both empirical and simulation results suggest that adap-
tation comes with accumulation of collective memory as
a powerful buffer against flood risk, while the adoption
of structural measures (e.g., construction of levees) may
lead to more catastrophic events (Ciullo, 2017; Fanta
et al., 2019; Gober & Wheater, 2015). Since the memory
decay laws serve as a key to understanding collective
memory changes, the adoption of the UDM with more

general explanatory power helps further model develop-
ments, to deepen understanding of human–flood
interactions.

Second, integration of the UDM helps in exploring
differences between different clusters (e.g., rural and
urban dwellers) that are prevalent in the face of flooding
risks. Our results suggest that rural respondents, who
had experienced floods in person (or heard from their
around) (Figure 4b), are more likely to suffer larger total
flooding losses than urban respondents, within a same
flooding sequence (Figure 7). Urban dwellers can accu-
mulate flood memory more quickly (Figure 8), which
may be related to the fact that they often have higher
levels of education, as their awareness of flood risk from
cultural memory is higher than that of rural dwellers
(Figure 4b). However, previous studies have shown that
urban and rural flood risk management strategies are
quite different (Morris, Beedell, & Hess, 2016; Twigger-
Ross et al., 2005), for which it is necessary to set up differ-
ent strategies to different clusters when confronted with
flood hazard risk.

Finally, for policymakers, models should make practi-
cal sense to help in answering the question of how to
maintain the flooding memory (Loucks, 2015; Troy,
Pavao-Zuckerman, & Evans, 2015). With an improve-
ment, the UDM introduces a parameter for the conver-
sion rate of communicative memory to cultural memory
(Candia et al., 2018). Since this parameter describes a
social learning process of converting knowledge into a
written record (regarding cultural memory), it can
enlighten future policymakers on how to transmit flood
memory to younger generations, in order to mitigate
flooding risks. Thus, it responds to previous calls for
exploration of flood memory transmission channels
(Fanta et al., 2019).

Taken together, since the previous exponential model
of flood memory is rigid and lacking in explanatory, a
deeper understanding of flooding memory by dis-
tinguishing between two practicable channels (communi-
cative memory and cultural memory) can inspire further
flood risk management.

5 | CONCLUSION

Collective memory is often cited as an important variable
in interplays between society and floods, but previous
socio-hydrological models have conceptualized its decay
too simply. We examined the real-life flooding memory
through a survey and data were used to fit different
models for the decay of flooding memory. Our results
suggest that the Universal Decay Model (UDM), rather
than the exponential model widely adopted in related
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socio-hydrology models now, provides more consistent
interpretations of flood memory. We then integrated the
UDM into a socio-hydrological model for further simula-
tions. Once again, results indicate that the UDM-based
model successfully captured differences between clusters:
Rural dwellers are more likely to suffer larger total flooding
losses than urban respondents within a same flooding
sequence as urban dwellers can accumulate flood memory
more quickly. In summary, the exponential decay model
widely used now lacks a sufficiently valid explanation of
the social process associated with collective memory. On
the other hand, supported by the results of survey, goodness
of fit, and differences between models simulations, an inte-
gration of the UDM may well inspire us in generating
deeper insights into flood risk management. We call for,
therefore, a further exploration of socio-flood interactions
based on the UDM as a society module in the future.
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